摘要:
Ambipolar conduction can be reduced in carbon nanotube transistors by forming a gate electrode of a metal. Metal sidewall spacers having different workfunctions than the gate electrode may be formed to bracket the metal gate electrode.
摘要:
Faceted catalytic dots are used for directing the growth of carbon nanotubes. In one example, a faceted dot is formed on a substrate for a microelectronic device. A growth promoting dopant is applied to a facet of the dot using an angled implant, and a carbon nanotube is grown on the doped facet of the dot.
摘要:
Faceted catalytic dots are used for directing the growth of carbon nanotubes. In one example, a faceted dot is formed on a substrate for a microelectronic device. A growth promoting dopant is applied to a facet of the dot using an angled implant, and a carbon nanotube is grown on the doped facet of the dot.
摘要:
Methods of forming microelectronic structures are described. Embodiments of those methods include forming a III-V tri-gate fin on a substrate, forming a cladding material around the III-V tri-gate fin, and forming a hi k gate dielectric around the cladding material.
摘要:
Methods of forming microelectronic structures are described. Embodiments of those methods include forming a III-V tri-gate fin on a substrate, forming a cladding material around the III-V tri-gate fin, and forming a hi k gate dielectric around the cladding material.
摘要:
In one embodiment, the present invention includes a method for forming a logic device, including forming an n-type semiconductor device over a silicon (Si) substrate that includes an indium gallium arsenide (InGaAs)-based stack including a first buffer layer, a second buffer layer formed over the first buffer layer, a first device layer formed over the second buffer layer. Further, the method may include forming a p-type semiconductor device over the Si substrate from the InGaAs-based stack and forming an isolation between the n-type semiconductor device and the p-type semiconductor device. Other embodiments are described and claimed.
摘要:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
摘要:
In one embodiment, the present invention includes a method for forming a logic device, including forming an n-type semiconductor device over a silicon (Si) substrate that includes an indium gallium arsenide (InGaAs)-based stack including a first buffer layer, a second buffer layer formed over the first buffer layer, a first device layer formed over the second buffer layer. Further, the method may include forming a p-type semiconductor device over the Si substrate from the InGaAs-based stack and forming an isolation between the n-type semiconductor device and the p-type semiconductor device. Other embodiments are described and claimed.
摘要:
Embodiments of the invention include apparatuses and methods relating to directed carbon nanotube growth using a patterned layer. In some embodiments, the patterned layer includes an inhibitor material that directs the growth of carbon nanotubes.