Abstract:
According to embodiments of the present invention, a method of writing to an optical data storage medium is provided. The method includes receiving a plurality of data elements, each data element having one of a plurality of values, wherein each value of the plurality of values is associated with a wavelength, and forming, for each data element, a nanostructure arrangement on the optical data storage medium, the nanostructure arrangement configured to reflect light of the wavelength associated with the value of the data element in response to a light irradiated on the optical data storage medium. According to further embodiments of the present invention, a method of reading from an optical data storage medium and an optical data storage medium are also provided.
Abstract:
A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and may have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be a single crystal and may be free-standing. Such a semiconductor may be either lightly n-doped, heavily n-doped, lightly p-doped or heavily p-doped. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor. Two or more of such a semiconductors, including an array of such semiconductors, may be combined to form devices, for example, to form a crossed p-n junction of a device. Such devices at certain sizes may exhibit quantum confinement and other quantum phenomena, and the wavelength of light emitted from one or more of such semiconductors may be controlled by selecting a width of such semiconductors. Such semiconductors and device made therefrom may be used for a variety of applications.
Abstract:
A method for selectively aligning and positioning semiconductor nanowires on a substrate by providing a substrate; patterning electrodes on a surface of the substrate; conditioning the surface of the substrate to attach semiconductor nanowires to the surface by functionalizing the surface with a first functional group having an affinity for the semiconductor nanowires; providing an environment in contact with the electrodes, the environment having suspended therein the semiconductor nanowires; and providing an electric field between the electrodes, thereby causing the nanowires in the environment to align between and electrically connect the electrodes to thereby form a semiconducting channel between the electrodes.
Abstract:
A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor.
Abstract:
Fuel capsules usable in inertial confinement fusion (ICF) reactors have shells made from materials having a diamond (sp3) lattice structure, including diamond materials in synthetic crystalline, polycrystalline (ordered or disordered), nanocrystalline and amorphous forms. The interior of the shell is filled with a fusion fuel mixture, including any combination of deuterium and/or tritium and/or helium-3 and/or other fusible isotopes.
Abstract translation:可用于惯性约束熔融(ICF)反应器的燃料胶囊具有由具有金刚石(sp 3 O 3)晶格结构的材料制成的壳,包括合成晶体,多晶(有序或无序)的纳米晶体和无定形的金刚石材料 形式。 壳体的内部填充有聚合燃料混合物,包括氘和/或氚和/或氦-3和/或其它可熔同位素的任何组合。
Abstract:
Particles, which may include nanoparticles, are mixed with carbon nanotubes and deposited on a substrate to form a cold cathode. The particles enhance the field emission characteristics of the carbon nanotubes. An additional activation step may be performed on the deposited carbon nanotube mixture to further enhance the emission of electrons.
Abstract:
Composition of carbon nanotubes (CNTs) are produced into inks that are dispensable via printing or stencil printing processes. The CNT ink is dispensed into wells formed in a cathode structure through a stencil.
Abstract:
Particles, which may include nanoparticles, are mixed with carbon nanotubes and deposited on a substrate to form a cold cathode. The particles enhance the field emission characteristics of the carbon nanotubes. An additional activation step may be performed on the deposited carbon nanotube mixture to further enhance the emission of electrons.
Abstract:
A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and may have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be a single crystal and may be free-standing. Such a semiconductor may be either lightly n-doped, heavily n-doped, lightly p-doped or heavily p-doped. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor. Two or more of such a semiconductors, including an array of such semiconductors, may be combined to form devices, for example, to form a crossed p-n junction of a device. Such devices at certain sizes may exhibit quantum confinement and other quantum phenomena, and the wavelength of light emitted from one or more of such semiconductors may be controlled by selecting a width of such semiconductors. Such semiconductors and device made therefrom may be used for a variety of applications.
Abstract:
The invention is a method for the formation and analysis of novel miniature deposition domains. These deposition domains are placed on a surface to form a molecular array. The molecular array is scanned with an AFM to analyze molecular recognition events and the effect of introduced agents on defined molecular interactions. This approach can be carried out in a high throughput format, allowing rapid screening of thousands of molecular species in a solid state array. The procedures described here have the added benefit of allowing the measurement of changes in molecular binding events resulting from changes in the analysis environment or introduction of additional effector molecules to the assay system. The processes described herein are extremely useful in the search for compounds such as new drugs for treatment of undesirable physiological conditions. The method and apparatus of the present invention does not require the labeling of the deposition material or the target sample and may also be used to deposit large size molecules without harming the same.