摘要:
In the case of monitoring a resolution of a scanning electron microscope, it is required to prepare a sample and to use a measuring algorithm so as to reduce the pattern dependency of an index value of resolution to be measured in order to measure a variation in the size of an electron beam with a high degree of accuracy. According to the present invention, there is used a sample having a sectional shape which is appropriate for monitoring the resolution, that is, the sample has a pattern with such a sectional shape that a side wall of the pattern is inclined so as to prevent an electron beam irradiated on the sample from impinging upon the side wall of the pattern. With this configuration, it is possible carry out such resolution monitor that does not depend upon a sectional shape of a pattern.
摘要:
To provide a consistent, high-speed, high-precision measurement method based on an electron beam simulation by reflecting the apparatus characteristics of a CD-SEM in an electron beam simulation, the present invention discloses a method for measuring a measurement target pattern with a CD-SEM, the method comprising the steps of performing an electron beam simulation on various target pattern shapes, which is reflected apparatus characteristic and image acquisition conditions; creating SEM simulated waveforms; storing a combination of the created SEM simulated waveforms and pattern shape information corresponding to the created SEM simulated waveforms as a library; comparing an acquired actual electron microscope image with the SEM simulated waveforms; selecting the SEM simulated waveform that is most similar to the actual electron microscope image; and estimating the shape of the measurement target pattern from the pattern shape information corresponding to the selected SEM simulated waveform.
摘要:
A method of measuring pattern dimensions includes evaluating a relationship between cross-sectional shapes of a pattern and measurement errors of a pattern in a specified image processing technique, and conducting an actual measurement in which dimension measurement of an evaluation objective pattern from image signals of a microscope is carried out, and revising errors of the dimension measurement of the evaluation objective pattern based on the relationship between the cross-sectional shapes of a pattern and the measurement errors of a pattern previously evaluated.
摘要:
Conventionally, there is no method for quantitatively evaluating the three-dimensional shape of an etched pattern in a non-destructive manner and it takes much time and costs to determine etching conditions. With the conventional length measuring method only, it has been impossible to detect an abnormality in the three-dimensional shape and also difficult to control the etching process. According to the present invention, variations in signal amounts of an SEM image are utilized to compute three-dimensional shape data on the pattern associated with the etching process steps, whereby the three-dimensional shape is quantitatively evaluated. Besides, determination of etching process conditions and process control are performed based on the three-dimensional shape data obtained. The present invention makes it is possible to quantitatively evaluate the three-dimensional shape of the etched pattern in a non-destructive manner. Further, the efficiency of determining the etching process conditions and a stable etching process can be realized.
摘要:
In order to enable the most suitable image processing condition to be set as one in which a dispersion in brightness between comparing images caused by object to be inspected and an image detecting system is not applied as a false information, in the present invention, there is obtained a noise characteristic of a secondary electron image caused by the image detecting system is calculated, the most suitable image processing parameters are determined depending on the object to be inspected on the basis of the characteristic, and its comparing processing is performed by using the noise characteristic and the image of the object to be inspected, thereby a dispersion in process for the object to be inspected is evaluated.
摘要:
Conventionally, there is no method for quantitatively evaluating the three-dimensional shape of an etched pattern in a non-destructive manner and it takes much time and costs to determine etching conditions. With the conventional length measuring method only, it has been impossible to detect an abnormality in the three-dimensional shape and also difficult to control the etching process.According to the present invention, variations in signal amounts of an SEM image are utilized to compute three-dimensional shape data on the pattern associated with the etching process steps, whereby the three-dimensional shape is quantitatively evaluated. Besides, determination of etching process conditions and process control are performed based on the three-dimensional shape data obtained.The present invention makes it is possible to quantitatively evaluate the three-dimensional shape of the etched pattern in a non-destructive manner. Further, the efficiency of determining the etching process conditions and a stable etching process can be realized.
摘要:
The present invention relates to a method and apparatus for measuring a three-dimensional profile using a SEM, capable of accurately measuring the three-dimensional profile of even a flat surface or a nearly vertical surface based on the inclination angle dependence of the amount of secondary electron image signal detected by the SEM. Specifically, a tilt image obtaining unit obtains a tilt image (a tilt secondary electron image) I(2) of flat regions a and c1 on a pattern to be measured by using an electron beam incident on the pattern from an observation direction φ(2). Then, profile measuring units presume the slope (or surface inclination angle) at each point on the pattern based on the obtained tilt image and integrate successively each presumed slope value (or surface inclination angle value) to measure three-dimensional profiles S2a and S2c. This arrangement allows a three-dimensional profile to be accurately measured.
摘要:
In monitoring of an exposure process, a highly isolative pattern greatly changed in a shape of cross section by fluctuations in the exposure dose and the focal position is an observation target. Especially, to detect a change in a resist shape of cross section from a tapered profile to an inverse tapered profile, one of the following observation methods is employed to obtain observation data: (1) a tilt image of a resist pattern is imaged by using tilt imaging electron microscopy, (2) an electron beam image of a resist pattern is imaged under imaging conditions for generating asymmetry on an electron beam signal waveform, and (3) scattering characteristic data of a resist pattern is obtained by an optical measurement system. The observation data is applied to model data created beforehand in accordance with the exposure conditions to estimate fluctuations in the exposure dose and the focal position.
摘要:
The present invention provides a scanning electron microscope (SEM) or optical inspection method and apparatus which correct differences in brightness between comparison images and thus which is capable of detecting a fine defect with a high degree of reliability without causing any false defect detection. According to the present invention, the brightness values of a pattern, which should be essentially the same, contained in two detected images to be compared are corrected in such a manner that, even if there may be a brightness difference in a portion free from defects, the brightness difference is reduced to such a degree so that it can be recognized as a normal portion. Also, a limit for the amount of correction is furnished in advance, and correction exceeding such limit value is not performed. Such correction prevents the difference in brightness that should be permitted as non-defective from being falsely recognized as a defect without overlooking great differences in brightness due to a defect.
摘要:
The present invention relates to detection of defects with simple specification of the coordinates, in the inspection of an object having a plurality of patterns in which a portion having the two-dimensional repetition and portions having the repetition only in the X direction and in the Y direction are mixedly present. The cross comparison between a notice point and comparison points, for example, which are repetitive pitches away from the notice point, is carried out, and only the portion having the difference which can be found out with any of the comparison points is extracted as a defect candidate, which results in that the portion having the two-dimensional repetition as well as the portion having the repetition only in the X direction or in the Y direction can be inspected. As a result, while the portion, such as an isolated point, having no repetition both in the X direction and in the Y direction is extracted as the defect candidate, the defect candidate is not treated as the defect in the case where the defect candidate of interest occurs regularly in a plurality of objects to be inspected, so that such a defect candidate is excluded to extract only a true defect.