Abstract:
An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
Abstract:
An implantable medical device system includes a pacemaker and an extravascular implantable cardioverter defibrillator (ICD). The pacemaker is configured to acquire a cardiac electrical signal, determine RR intervals from the cardiac electrical signal, apply ventricular tachycardia detection criteria solely to the RR intervals, detect ventricular tachycardia (VT) when the detection criteria are met; and deliver anti-tachycardia pacing in response to detecting the VT before the extravascular ICD delivers a shock therapy.
Abstract:
Provided is a method, system and/or apparatus for determining prospective heart failure event risk. Acquired from a device memory are a heart failure patient's current and preceding risk assessment periods. Counting detected data observations in the current risk assessment period for a current risk assessment total amount and counting detected data observations in the preceding risk assessment period for a preceding risk assessment period total amount. Associating the current risk assessment and preceding risk assessment total amounts with a lookup table to acquire prospective risk of heart failure (HF) event for the preceding risk assessment period and the current risk assessment period. Employing weighted sums of the prospective risk of the HF event for the preceding risk assessment period and the current risk assessment period to calculate a weighted prospective risk of the HF event for a patient. Displaying on a graphical user interface the weighted prospective risk of the HF event for the patient.
Abstract:
A method and device apparatus to deliver a pacing therapy capable of remodeling a patient's heart over a period of time that includes monitoring one or more parameters in response to a delivered cardiac remodeling pacing, determining whether the cardiac remodeling pacing has an effect on cardiac normalization in response to the monitoring, and adjusting the cardiac remodeling pacing in response to the determined effect on cardiac normalization. The method and device may also perform short-term monitoring of one or more parameters in response to the delivered cardiac remodeling pacing, monitor one or more long-term parameter indicative of a long-term effect of the delivered cardiac remodeling pacing, determine the long-term effect of the delivered cardiac remodeling pacing on cardiac normalization in response to the monitoring, and adjust the cardiac remodeling pacing in response to one or both of the short-term monitoring and the determined long-term effect on cardiac normalization.
Abstract:
In situations in which an implantable medical device (e.g., a subcutaneous ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the subcutaneous ICD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the ICD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the ICD includes a first pace pulse detector configured to obtain a sensed electrical signal and analyze the sensed electrical signal to detect a first type of pulses having a first set of characteristics and a second pace pulse detector configured to obtain the sensed electrical signal and analyze the sensed electrical signal to detect a second type of pulses having a second set of characteristics.
Abstract:
Methods and systems for seamless adjustment of treatment are disclosed. A determination can be made as to whether to intervene with a patient's treatment based on data obtained from implantable electrodes and/or non-implantable electrodes. The data from non-implantable electrodes have a correction factor applied to adjust for less accuracy compared to data acquired from implantable electrodes.
Abstract:
An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
Abstract:
An example system includes electrodes configured to deliver the electrical stimulation to a patient, and a device comprising processing circuitry configured to determine, for a patient, a loading dose of electric stimulation. The processing circuitry is also configured to cause electrical stimulation circuitry' to deliver, during a first time period, the loading dose to the patient, receive patient feedback representing a response of the patient to the loading dose, determine, based on patient feedback, a maintenance dose of electrical stimulation, and cause the electrical stimulation circuitry to deliver, and during a second time period that is after the first time period, a maintenance dose of electrical stimulation. Delivering the maintenance dose of electrical stimulation consumes less power than delivering the loading dose of electrical stimulation.
Abstract:
Techniques are disclosed for using a cardiac signal sensed via a plurality of electrodes disposed on one or more leads implanted within an epidural space of a patient to control spinal cord stimulation (SCS) therapy. In one example, an implantable medical device (IMD) senses an electrical signal via a plurality of electrodes disposed on one or more leads implanted within an epidural space of a patient. Processing circuitry determines, from the electrical signal, one or more cardiac features indicative of activity of a heart of the patient. The processing circuitry controls, based on the one or more cardiac features, delivery of SCS therapy to the patient.
Abstract:
Systems and methods include differential diagnosis for acute heart failure to provide treatment to a patient including determining whether the patient has cardiac volume overload, determining whether the patient has decreased abdominal venous system volume, and providing the appropriate treatment in response to the determinations. A multi-sensor system may be used to determine cardiac volume and abdominal venous system volume. Fluid redistribution treatment may be provided when cardiac volume overload is accompanied by a decrease in abdominal venous system volume. Fluid accumulation treatment may be provided when cardiac volume overload is not accompanied by a decrease in abdominal venous system volume.