Abstract:
An apparatus, such as a memory device, that includes circuits and techniques to synchronize various internal signals with an internal clock signal to ensure proper functionality of the memory device through various modes of operation. A clock enable control circuit is provided to control the input of a delay locked loop circuit to provide a locked condition based on a particular type of command input and the state of various control signals to allow for multiple locking conditions and adjustments based on a length of a clock cycle of the internal clock signal.
Abstract:
Methods and apparatus including a latency control circuit are described. An example apparatus includes a delay line circuit configured to delay a clock signal, and a latch control circuit configured to receive the clock signal and the delayed clock signal. The latch control circuit is configured to provide first control signals based on a count associated with the first clock signal. The latch control circuit is further configured to provide second control signals based on the count associated with the first clock signal. The second clock signals are delayed relative to the first clock signals by an amount substantially equal to a delay between the clock signal and the delayed clock signal. The example apparatus further includes a latch circuit configured to latch an input signal responsive to the first control signals. The latch circuit is further configured to provide the latched signal to an output responsive to the second control signals.
Abstract:
A device includes an output circuit, a DLL (Delay Locked Loop) circuit including a first delay line receiving a first clock signal and outputting, in response to receiving the clock signal, a second clock signal supplied to the output circuit, and an ODT (On Die Termination) circuit receiving an ODT activation signal and outputting, in response to receiving the ODT activation signal, an ODT output signal supplied to the output circuit to set the output circuit in a resistance termination state, and the ODT circuit including a second delay line configured to be set by the DLL circuit in an equivalent delay amount that is equivalent to a delay amount of the first delay line, the ODT output signal being, in a first time-period during which the ODT activation signal is in an active state, generated by being conveyed via the second delay line in which the equivalent delay amount has been set.