摘要:
An environment sensitive device is disclosed. The device includes a substrate, a three-dimensional structure established on the substrate, a first coating established on a first portion of the three-dimensional structure, and a second coating established on a second portion of the three-dimensional structure. The first and second coatings contain different materials that are configured to respond differently when exposed to a predetermined external stimulus.
摘要:
A nanorod surface enhanced Raman spectroscopy (SERS) apparatus, system and method of SERS using nanorods that are activated with a key. The nanorod SERS apparatus includes a plurality of nanorods, an activator to move the nanorods from an inactive to an active configuration and the key to trigger the activator. The nanorod SERS system further includes a Raman signal detector and an illumination source. The method of SERS using nanorods includes activating a plurality of nanorods with the key, illuminating the activated plurality of nanorods, and detecting a Raman scattering signal when the nanorods are in the active configuration.
摘要:
A sensing device (10, 10′) includes a substrate (14), and first and second electrodes (EIC, EICS, EO) established on the substrate (14). The first electrode (EIC, EICS) has a three-dimensional shape, and the second electrode (EO) is electrically isolated from and surrounds a perimeter of the first electrode (EIC, EICS).
摘要:
A device for Surface Enhanced Raman Scattering (SERS). The device includes a plurality of nanostructures protruding from a surface of a substrate, a SERS active metal disposed on a portion of said plurality of nanostructures, and a low friction film disposed over the plurality of nanostructures and the SERS active metal. The low friction film is to prevent adhesion between the plurality of nanostructures.
摘要:
A surface-enhanced Raman spectroscopy device includes a substrate, and an ultraviolet cured resist disposed on the substrate. The ultraviolet cured resist has a pattern of cone-shaped protrusions, where each cone-shaped protrusion has a tip with a radius of curvature equal to or less than 10 nm. The ultraviolet cured resist is formed of a predetermined ratio of a photoinitiator, a cross-linking agent, and a siloxane based backbone chain. A Raman signal-enhancing material is disposed on each of the cone-shaped protrusions.
摘要:
A substrate for Surface Enhanced Raman Scattering (SERS). The substrate comprises at least one nanostructure protruding from a surface of the substrate and a SERS active metal over the at least one nanostructure, wherein the SERS active metal substantially covers the at least one nanostructure and the SERS active metal creates a textured layer on the at least one nanostructure.
摘要:
A memristive device (400) includes: a first electrode (405); a second electrode (425); a memristive matrix (415) interposed between the first electrode (405) and the second electrode (425); a porous dopant diffusion element (410) in physical contact with the memristive matrix (415) and in proximity to the first electrode (405) and the second electrode (425); and a first mobile dopant species which moves through the porous dopant diffusion element (410) in response to a programming electrical field. A method for using a memristive device (400) having a porous dopant diffusion element (410) includes applying a voltage bias to generate a programming electrical field such that dopants move through the porous dopant diffusion element (410), thereby changing the distribution of dopants within a memristive matrix (415) to form a first state; removing the voltage bias, the dopants being substantially immobile in the absence of the programming electrical field; and applying a reading energy to the memristive device (400) to sense the first state.
摘要:
A memristive device includes: a first electrode; a second electrode; a memristive matrix interposed between the first electrode and the second electrode; a porous dopant diffusion element in physical contact with the memristive matrix and in proximity to the first electrode and the second electrode; and a first mobile dopant species which moves through the porous dopant diffusion element in response to a programming electrical field. A method for using a memristive device having a porous dopant diffusion element includes applying a voltage bias to generate a programming electrical field such that dopants move through the porous dopant diffusion element, thereby changing the distribution of dopants within a memristive matrix to form a first state; removing the voltage bias, the dopants being substantially immobile in the absence of the programming electrical field; and applying a reading energy to the memristive device to sense the first state.
摘要:
A substrate for Surface Enhanced Raman Scattering (SERS). The substrate comprises at least one nanostructure protruding from a surface of the substrate and a SERS active metal over the at least one nanostructure, wherein the SERS active metal substantially covers the at least one nanostructure and the SERS active metal creates a textured layer on the at least one nanostructure.
摘要:
A fabrication process for conformal coating of a thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional micro/nanobattery applications, compositions thereof, and devices incorporating such compositions. In embodiments, conformal coatings (such as uniform thickness of around 20-30 nanometer) of polymer Polymethylmethacralate (PMMA) electrolyte layers around individual Ni—Sn nanowires were used as anodes for Li ion battery. This configuration showed high discharge capacity and excellent capacity retention even at high rates over extended cycling, allowing for scalable increase in areal capacity with electrode thickness. Such conformal nanoscale anode-electrolyte architectures were shown to be efficient Li-ion battery system.