Abstract:
A road map display device including a road map information memory for memorizing road map data on a two-dimensional coordinate and a detection device for detecting a present position and a travel direction of an automotive vehicle, wherein the two-dimensional coordinate of the road map data is read out from the information memory in accordance with the present position and travel direction of the vehicle detected by the detection device and displayed in the form of a plane view on a screen of a display unit. In the road map display device, trapezoid conversion parameters are determined on a basis of a conversion formula for converting the two-dimensional coordinate of the road map to a trapezoid, coordinate for display of a perspective view in such a manner that an upper side of a square two-dimensional coordinate is contracted relatively to a lower side of the two-dimensional coordinate, and the road map data included in a reverse trapezoid coordinate defined by a reverse conversion formula of the conversion formula are read out from the road map information memory and introduced into a trapezoid coordinate defined by the trapezoid conversion parameters such that the road map data are displayed in the form of a perspective view on the screen of the display unit.
Abstract:
In a navigation apparatus for a vehicle, an entire route from a start point to a destination is determined and the vehicle is guided to the destination in accordance with the determined route. In the navigation apparatus, an entire route from a start point to a destination is first determined. Route determination is performed for a part of the entire route in accordance with a request of a user, and the entire route to the destination is determined again based on the result of the determination performed for the part of the entire route. The navigation apparatus has a first remaining-distance displaying unit and a second remaining-distance displaying unit. The first remaining distance display unit displays an arrow indicating the route and the remaining distance to an intersection. The second remaining-distance display unit deletes the display of the distance provided by the first remaining-distance display unit and changes the length of the arrow, which indicates the route, as the vehicle advances.
Abstract:
In traveling toward a destination, locus data for routes traveled by a vehicle is repeatedly learned and stored, and a route is identified in route searching using the stored locus data. The stored locus data may be rearranged or deleted, and undesired locus data is not used in route searching. Storage of locus data may be limited to certain areas so as not to store undesired locus data. The geographical coordinates of the stored locus data are corrected, as required, and locus data such as links are correctly shown on a map.
Abstract:
Plural guide routes to a destination are found based upon different bodies of road (intersection) information, one of these plural guide routes is selected, and guidance to the destination via the selected route is output. One of the bodies of road (intersection) information is memorized map information and another body of road (intersection) information is related to roads or intersections which have been passed through before.
Abstract:
Upon recognizing the shapes of buildings or facilities, the buildings or facilities can be identified and destinations can be designated simply and easily. The display of a house map and a road map is changed over depending upon predetermined conditions. This makes it easy to navigate to the destination. When the destination is shown on the house map, a guide route is identified on a road adjacent to the building at the destination. This makes it easy to see where in the vicinity of the destination the car arrives.
Abstract:
In order to calculate the traveling distance and heading of a vehicle in highly accurate fashion, a navigation system is provided with a distance sensor for outputting pulses in proportion to rotation of a wheel, a GPS receiving unit for calculating vehicle speed by GPS reception, acquisition unit for acquiring the number of pulses at the same time as GPS reception, distance correction coefficient calculating unit for calculating GPS traveling distance from the GPS-reception vehicle speed and a time difference between any two points, and calculating a distance correction coefficient from the GPS traveling distance and a pulse difference between two points, and present position calculating unit for calculating present position based upon a corrected distance correction coefficient.
Abstract:
A vehicle navigation system includes a simulated run mode along with a normal navigation mode. In the simulated run mode, a simulated present position is calculated to move in accordance with simulated motion so that route guidance information is presented to the viewer in the same manner as during actual navigation. The simulated motion may be increased or decreased, may be stepped or continuous, and/or may be controlled in accordance with stored speed information on the roads of the route.
Abstract:
A navigation system includes a first information storage device containing stored map data and a display unit for displaying a map by reading the map data. Provision is made for setting a point on the map displayed by the display unit and for inputting a telephone number. A second information storage device is provided for registering the input telephone number in correlation with the positional coordinates of the set point.
Abstract:
Geographical, guide or search information and route information are stored in storage sections. An arithmetic section provides a route researching function with preference for the traveling direction of a vehicle. A route-calculating section is provided for re-calculating the route, and a route guide control system is also provided, inclusive of a route deviation-detecting section. The re-calculating section calculates either the shortest route from the point of deviation to the previous route or a new route to the destination. In case of the search of the shortest route to the previous route, the shortest route from the present location to the previous route is searched giving preference to the traveling direction, e.g. avoidance of a U-turn, on the basis of the search information relating to the immediate vicinity of the present location, so that the route to rejoin the previous route can be quickly calculated. In case of search of a new route, the whole route from the present location to the destination is searched, again giving weight to the present traveling direction, on the basis of the search information relating to the area between the present location and the destination, to guide the driver along a new route completely different from the previous one.
Abstract:
A route guidance section compares the current position provided by a current position determination section and the route provided by a route calculation section for detecting an off-route condition. When the off-route condition is detected, a researching key as well as the route and current place is displayed on a display section. When the researching key is touched, a search is again made for a new route from the current position to the destination. Then, route guidance is again started in response to the researching result. When the researching key is not touched, the route and current place continue to be displayed while the vehicle carrying the apparatus travles off route, thereby efficiently preventing the apparatus from executing unnecessary researching when the driver drives the vehicle off route on purpose.