摘要:
A system and method for adjustment of modeled timing data variation as a function of past state and/or switching history during static timing analysis. One illustrative embodiment may include inputting and asserting at least one of initial signal history bound and explicit device history bound constraints for at least one signal of a circuit design and evaluating for a segment processed during a forward propagation of block based static timing analysis whether any input signal to a current segment has a bounded history, at least one of propagated and asserted. The method may further include evaluating for the segment whether history bounds are downstream from a gating restriction, and processing a next segment until there are no further segments.
摘要:
A system and method for the adjustment of history based delay variation during static timing analysis of an integrated circuit design. The method may include obtaining information through sources of variability of history based components of delay variability, and a relationship between the sources of variability and one or more bounded device histories. Then, inputting history bounds for at least one signal of the integrated circuit design, and computing and propagating history bounds through at least one first segment of the integrated circuit design to at least one signal of the integrated circuit design. Further, the method may include evaluating from at least one of the propagated history bounds, device history bounds for at least one second segment of the integrated circuit design, and based on the evaluated device history bounds, adjusting at least one of a value of the history based delay variability and propagation of timing.
摘要:
Methods, systems and program products for evaluating an IC chip are disclosed. In one embodiment, the method includes running a statistical static timing analysis (SSTA) of a full IC chip design; creating at-functional-speed test (AFST) robust paths for an IC chip, the created robust paths representing a non-comprehensive list of AFST robust paths for the IC chip; and re-running the SSTA with the SSTA delay model setup based on the created robust paths. A process coverage is calculated for evaluation from the SSTA runnings; and a particular IC chip is evaluated based on the process coverage.
摘要:
Disclosed is a computer-implemented method for designing a chip to optimize yielding parts in different bins as a function of multiple diverse metrics and further to maximize the profit potential of the resulting chip bins. The method separately calculates joint probability distributions (JPD), each JPD being a function of a different metric (e.g., performance, power consumption, etc.). Based on the JPDs, corresponding yield curves are generated. A profit function then reduces the values of all of these metrics (e.g., performance values, power consumption values, etc.) to a common profit denominator (e.g., to monetary values indicating profit that may be associated with a given metric value). The profit function and, more particularly, the monetary values can be used to combine the various yield curves into a combined profit-based yield curve from which a profit model can be generated. Based on this profit model, changes to the chip design can be made in order to optimize yield as a function of all of the diverse metrics (e.g., performance, power consumption, etc.) and further to maximize the profit potential of the resulting chips.
摘要:
Methods, systems and program products for evaluating an IC chip are disclosed. In one embodiment, the method includes running a statistical static timing analysis (SSTA) of a full IC chip design; creating at-functional-speed test (AFST) robust paths for an IC chip, the created robust paths representing a non-comprehensive list of AFST robust paths for the IC chip; and re-running the SSTA with the SSTA delay model setup based on the created robust paths. A process coverage is calculated for evaluation from the SSTA runnings; and a particular IC chip is evaluated based on the process coverage.
摘要:
Systems and methods for accommodating correlated parameters in SSTA are provided. The method includes determining a correlation between at least two parameters. The method further includes calculating a new parameter or a new parameter set based on the correlation between the at least two parameters. The method further includes performing the SSTA such that the new parameter or the new parameter set is propagated into the SSTA. The method further includes projecting slack using the correlation between the at least two parameters and using a processor.
摘要:
Disclosed is a computer-implemented method for designing a chip to optimize yielding parts in different bins as a function of multiple diverse metrics and further to maximize the profit potential of the resulting chip bins. The method separately calculates joint probability distributions (JPD), each JPD being a function of a different metric (e.g., performance, power consumption, etc.). Based on the JPDs, corresponding yield curves are generated. A profit function then reduces the values of all of these metrics (e.g., performance values, power consumption values, etc.) to a common profit denominator (e.g., to monetary values indicating profit that may be associated with a given metric value). The profit function and, more particularly, the monetary values can be used to combine the various yield curves into a combined profit-based yield curve from which a profit model can be generated. Based on this profit model, changes to the chip design can be made in order to optimize yield as a function of all of the diverse metrics (e.g., performance, power consumption, etc.) and further to maximize the profit potential of the resulting chips.
摘要:
A method for verifying whether a circuit meets timing constraints by performing an incremental static timing analysis in which slack is represented by a distribution that includes sensitivities to various process variables. The slack at an endpoint is computed by propagating the arrival times and required arrival times of paths leading up to the endpoint. The computation of arrival and required arrival times needs the computation of delays of individual gate and wire segments in each path that leads to the endpoint. The mixed mode adds a deterministic timing to the statistical timing (DSTA+SSTA).
摘要:
A method for verifying whether a circuit meets timing constraints by performing an incremental static timing analysis in which slack is represented by a distribution that includes sensitivities to various process variables. The slack at an endpoint is computed by propagating the arrival times and required arrival times of paths leading up to the endpoint. The computation of arrival and required arrival times needs the computation of delays of individual gate and wire segments in each path that leads to the endpoint. The mixed mode adds a deterministic timing to the statistical timing (DSTA+SSTA).
摘要:
A statistical single library that includes on-chip variation (OCV) is created for timing and power analysis of a digital chip design. Initially, library values for all cells of a digital chip design, including ranges for environmental and process parameters, are subject to a statistical model to create statistical timing for the ranges of the parameters. A statistical timing tool is applied across the ranges of the parameters to determine statistical corners for delay and input power to a subset of cells. The statistically determined delay and input power to the subset of cells is entered into the statistical single library. Each delay of each statistical corner for the subset of cells is compared with a chip sign-off statistical delay requirement of a test macro.