Abstract:
Methods and systems are provided for controlling permanent magnet machines. The method includes determining a maximum torque of the PM machine based on an error between a commanded d-axis flux and an estimated d-axis flux of the PM machine, and adjusting a torque command based on the maximum torque. The error associated with a variation between a current temperature and a nominal temperature of the PM machine.
Abstract:
Methods and apparatus are provided for preventing a voltage overload condition of an alternating current (“AC”) motor electrically coupled to an inverter. In an embodiment, the system includes an oil pump, a motor in communication with the oil pump, an inverter module in electrical communication with the motor, the inverter module configured to generate a speed command, and a controller module. The controller module is in communication with the inverter module and the motor and is configured to determine an error, based, in part, on an estimated torque value of the motor and a predetermined maximum available torque value, to convert the error into a first value, to limit the first value between a negative value and zero, and to add the first value to the speed command from the inverter to thereby generate a final speed command for the motor.
Abstract:
Methods and apparatus are provided for an electric vehicle embodying an axial flux traction motor directly coupled to a wheel thereof. The fraction motor includes a stator having coils for producing a magnetic field, an annular rotor magnetically coupled to the stator and mechanically to an output shaft Permanent magnets of alternating polarity are mounted on the annular rotor. Magnetic shunts bridge a portion of the stator slots above the coils. The magnets are arranged in groups with group-to-group spacing exceeding magnet-to-magnet spacing. Adjacent edges of the magnets diverge. The method comprises, looking up d- and q-axis currents to provide the requested torque and motor speed for the available DC voltage, combining at least one of the d- and q-axis currents with a field weakening correction term, converting the result from synchronous to stationary frame and operating an inverter therewith to provide current to the coils of the motor.
Abstract:
A control system and method for an electric machine includes a first calculation module that receives a modified torque command and a calculated stator flux command and that generates first and second current commands and first and second voltage commands. A voltage magnitude calculation module generates a voltage magnitude based the first and second voltage commands. A reference voltage calculator module generates a reference voltage based on a DC link voltage, an angular stator velocity and the first and second current commands. A flux weakening module generates the calculated flux command based on the angular stator velocity, the reference voltage and the voltage magnitude.
Abstract:
A control system includes a field oriented controller that receives a torque command and that generates phase voltages for an electric machine. A first transformation module receives stator terminal currents and generates d-axis and q-axis stationary frame currents. An open loop flux observer receives d-axis and q-axis stationary frame voltage commands and the d and q-axis stationary frame currents. The open loop flux observer includes a vector cross product calculator that generates an error signal that is proportional to an angular difference between an estimated stator flux and a computed stator flux and a proportional integral controller that generates an estimated rotor angular position based on the error signal. A second transformation module receives the d-axis and q-axis stationary frame currents and the estimated rotor angular position and generates d-axis and q-axis synchronous reference frame feedback currents that are output to the field oriented controller.
Abstract:
Methods and systems for controlling an electric motor are provided. A signal comprising at least first and second cycles is provided to the electric motor. A first flux value for the electric motor associated with the first cycle of the signal is calculated. A second flux value for the electric motor associated with the second cycle of the signal is calculated based on the first flux value.
Abstract:
Methods and systems are provided for controlling an electric machine via an inverter while compensating for one or more hardware delays. The method includes receiving a control signal, producing a first sampling signal based on the control signal, and adjusting the sampling signal to compensate for a first delay of the one or more hardware delays. The inverter is operable to produce a voltage signal based on the control signal, and the electric machine is operable to produce a current based on the voltage signal. A sampling of the current is performed based on the first sampling signal.
Abstract:
A method and system for operating a motor are provided. Power is provided to the motor through at least one switch operating at a first switching frequency. A pulse ratio of the motor is calculated based on the first switching frequency. The at least one switch is operated at a second switching frequency if the calculated pulse ratio is less than a first pulse ratio value and greater than a second pulse ratio value.
Abstract:
Methods and systems for operating a motor coupled to an electrical bus in a vehicle are provided. Selected resonant frequencies of the electrical bus are determined. The selected resonant frequencies include a low resonant frequency and a high resonant frequency. Power is provided to the motor through at least one switch operating at a switching frequency. The switching frequency is controlled as a function of a rate of operation of the motor. The function is characterized by one of a first substantially linear portion having a first slope when the switching frequency is less than or equal to a selected switching frequency and a second substantially linear portion having a second slope if the switching frequency is greater than the selected frequency, the selected switching frequency being greater than the low resonant frequency and a substantially linear portion having a y-intercept being greater than the low resonant frequency.
Abstract:
Methods and apparatus are provided for generating zero-sequence voltages based on voltage commands and a motor output signal. At least one of the methods includes, but is not limited to, receiving a torque command and generating three-phase voltage commands based on the torque command. The method also includes, but is not limited to, generating a motor output responsive to the three-phase voltage commands and generating three-phase zero-sequence voltage samples based on the three-phase voltage commands and the motor output.