摘要:
A gated diode structure and a method for fabricating the gated diode structure use a relaxed liner that is derived from a stressed liner that is typically used within the context of a field effect transistor formed simultaneously with the gated diode structure. The relaxed liner is formed incident to treatment, such as ion implantation treatment, of the stressed liner. The relaxed liner provides improved gated diode ideality in comparison with the stressed liner, absent any gated diode damage that may occur incident to stripping the stressed liner from the gated diode structure while using a reactive ion etch method.
摘要:
An integrated semiconductor device includes a resistor and an FET device formed from a stack of layers. The stack of layers includes a dielectric layer formed on a substrate; a metal conductor layer having lower electrical resistance formed on the dielectric layer; and a polysilicon layer formed on the metal conductor layer. A resistor stack is formed by patterning a portion of the original stack of layers into a resistor. An FET stack is formed from another portion of the original stack of layers. The FET stack is doped to form a gate electrode and the resistor stack is doped aside from the resistor portion thereof. Then terminals are formed at distal ends of the resistor in a doped portion of the polysilicon layer. Alternatively, the polysilicon layer is etched away from the resistor stack followed by forming terminals at distal ends of the metal conductor in the resistor stack.
摘要:
The present invention, in one embodiment, provides a semiconductor device including a semiconducting body including a schottky barrier region at a first end of the semiconducting body, a drain dopant region at the second end of the semiconducting body, and a channel positioned between the schottky barrier region and the drain dopant region. The semiconducting device may further include a gate structure overlying the channel of the semiconducting body. Further, a drain contact may be present to the drain dopant region of the semiconducting body, the drain contact being composed of a conductive material and in direct physical contact with a portion of a sidewall of the semiconducting body having a dimension that is less than a thickness of the semiconducting body in which the drain dopant region is positioned.
摘要:
An integrated semiconductor device includes a resistor and an FET device formed from a stack of layers. The stack of layers includes a dielectric layer formed on a substrate; a metal conductor layer having lower electrical resistance formed on the dielectric layer; and a polysilicon layer formed on the metal conductor layer. A resistor stack is formed by patterning a portion of the original stack of layers into a resistor. An FET stack is formed from another portion of the original stack of layers. The FET stack is doped to form a gate electrode and the resistor stack is doped aside from the resistor portion thereof. Then terminals are formed at distal ends of the resistor in a doped portion of the polysilicon layer. Alternatively, the polysilicon layer is etched away from the resistor stack followed by forming terminals at distal ends of the metal conductor in the resistor stack.
摘要:
A process for forming a bipolar transistor with a raised extrinsic base, an emitter, and a collector integrated with a CMOS circuit with a gate. An intermediate semiconductor structure is provided having CMOS and bipolar areas. An intrinsic base layer is provided in the bipolar area. A base oxide is formed across, and a sacrificial emitter stack silicon layer is deposited on, both the CMOS and bipolar areas. A photoresist is applied to protect the bipolar area and the structure is etched to remove the sacrificial layer from the CMOS area only such that the top surface of the sacrificial layer on the bipolar area is substantially flush with the top surface of the CMOS area. Finally, a polish stop layer is deposited having a substantially flat top surface across both the CMOS and bipolar areas suitable for subsequent chemical-mechanical polishing (CMP) to form the raised extrinsic base.
摘要:
High frequency performance of transistor designs is enhanced and manufacturing yield improved by removing and reducing sources of parasitic capacitance through combinations of processes from different technologies. After formation of collector, base and emitter regions on a substrate and attachment of a second substrate, the original substrate is wholly or partially removed, the inactive collector area is removed or rendered semi-insulating and wiring and contacts are made from the original back side of the chip. Dielectric material used in the manufacturing process can be removed to further reduce capacitance. The high frequency transistors can be bonded to CMOS chips or wafers to form BICMOS chips.
摘要:
A stack pad layers including a first pad oxide layer, a pad nitride layer, and a second pad oxide layer are formed on a semiconductor-on-insulator (SOI) substrate. A deep trench extending below a top surface or a bottom surface of a buried insulator layer of the SOI substrate and enclosing at least one top semiconductor region is formed by lithographic methods and etching. A stress-generating insulator material is deposited in the deep trench and recessed below a top surface of the SOI substrate to form a stress-generating buried insulator plug in the deep trench. A silicon oxide material is deposited in the deep trench, planarized, and recessed. The stack of pad layer is removed to expose substantially coplanar top surfaces of the top semiconductor layer and of silicon oxide plugs. The stress-generating buried insulator plug encloses, and generates a stress to, the at least one top semiconductor region.
摘要:
The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming at least a first and a second gate-mask stack on top of a semiconductor substrate, wherein the first and second gate-mask stacks include at least, respectively, a first and a second gate conductor of a first and a second transistor and have, respectively, a top surface, a first side, and a second side with the second side being opposite to the first side; performing a first halo implantation from the first side of the first and second gate-mask stacks at a first angle while applying the first gate-mask stack in preventing the first halo implantation from reaching a first source/drain region of the second transistor, wherein the first angle is equal to or larger than a predetermined value; and performing a second halo implantation from the second side of the first and second gate-mask stacks at a second angle, thereby creating halo implant in a second source/drain region of the second transistor, wherein the first and second angles are measured against a normal to the substrate.
摘要:
Methods for forming high performance gates in MOSFETs and structures thereof are disclosed. One embodiment includes a method including providing a substrate including a first short channel active region, a second short channel active region and a long channel active region, each active region separated from another by a shallow trench isolation (STI); and forming a field effect transistor (FET) with a polysilicon gate over the long channel active region, a first dual metal gate FET having a first work function adjusting material over the first short channel active region and a second dual metal gate FET having a second work function adjusting material over the second short channel active region, wherein the first and second work function adjusting materials are different.
摘要:
A bipolar transistor has a collector that is contacted directly beneath a base-collector junction by metallization to reduce collector resistance. A conventional reach-through and buried layer, as well as their associated resistance, are eliminated. The transistor is well isolated, nearly eliminating well-to-substrate capacitance and device-to-device leakage current. The structure provides for improved electrical performance, including improved fT, Fmax and drive current.