Abstract:
A speed-indicating instrument for a motor vehicle provided with a cruise-control system comprises a dial (1) provided with a speed-indicating pointer (3) that co-operates with a graduated scale (5). Displayed in a position adjacent to the graduated scale (5) is an arc of light (6) terminating at one end (6a) that indicates on the graduated scale (5) the cruise-speed value set. Said arc of light is displayed using a first optical filter (7) and a second optical filter (8) superimposed on one another and backlighted, at least one of which being controlled in angular position about the centre (4) of the dial (1) as a function of the cruise speed set.
Abstract:
Interface system for assisting an operator during a work stage comprising a support structure wearable by the operator, with a transparent screen placed in front of the operator's eyes to permit him to see a portion of a background; a virtual image generator for producing an optical signal directed towards the operator's retina so as to form a virtual image at a predetermined distance from the operator's eyes and superimposed on the background; a recording device integral with the operator's head, to record part of the operator's visual field and make available a signal representative of the visual field; a processing device for processing the signal from the recording device and generating a visual information signal of use to the operator for carrying out the work stage; and a device of reception/transmission for sending the signal from the recording device to the processing device, and rendering the information signal to the virtual image generator.
Abstract:
A module for projecting a light beam comprises: a light source suitable for producing the light beam, a substantially flat support surface on which the source is arranged in a manner such as to emit the light beam from only one side of the surface, and a curved reflecting surface which extends on one side of the support surface and has its concavity facing towards the support surface, and which is capable of reflecting the light beam originating from the source in a principal direction substantially parallel to the support surface of the source, the reflecting surface being divided into a plurality of reflecting areas suitable for receiving respective portions of the light beam. The plurality of reflecting areas comprises at least one area such that the portion of the light beam reflected by that area is substantially collimated in a vertical direction and has a small horizontal divergence α less than a first predetermined angular value α1, and at least one area which is designed in a manner such that the portion of the light beam reflected by that area has a wide horizontal divergence α greater than a second predetermined angular value α2. The area with wide horizontal divergence has a substantially elliptical horizontal cross-section parallel to the flat support surface with one of its foci substantially coinciding with the source and a substantially parabolic vertical cross-section with an axis substantially parallel to the flat support surface and with its focus substantially coinciding with the source.
Abstract:
An electro-optical system capable of being embarked aboard mobile ground or flying units, to determine the optical flow generated by obstacles in relative motion with respect to the mobile unit. The system comprises radiation emitter means (5), receiver means (1) for converting the radiation reflected by the objects into electrical signals and means (8) for processing the signals generated by the receiver means. The receiver means (1) are based on vision sensors with matrix configuration. The emitter means (5, 6) shape the radiation beam in such a way that the radiation reflected by the objects and collected by the receiver means impacts at least on a part of the receiver matrix. The processing means compute the optical flow only on the elements of the receiver matrix that are impacted by the radiation.
Abstract:
An optical module for projecting a light beam comprises a solid body of transparent material into which a light source is sunk and which is delimited by an annular surface and by a central surface, and a substantially annular reflecting surface arranged around the solid body. The central and annular surfaces are suitable for receiving respective distinct portions of the luminous flux produced by the source. The reflecting surface may have a reflecting coating or may form part of a transparent body, in which case it works by total internal reflection. The reflecting surface reflects a portion of luminous flux refracted by the annular surface and shapes the flux into a predetermined distribution of luminous intensity about the principal axis. The annular surface is designed in a manner such as to reduce the overall thickness of the module by moving the refracted ray away from the principal axis. The central surface shapes the other portion of the luminous flux emitted by the source into a predetermined distribution of luminous intensity about the principal axis. The surfaces cooperate so as to shape the luminous flux as a whole emerging from the source into a distribution of luminous intensity having divergences which may be different in two directions that are perpendicular to one another and to the principal axis.
Abstract:
A method of fabrication of transparent LED devices, of the type comprising the operations of: i) providing a series of conductive paths on a transparent underlayer; ii) connecting said conductive paths to electronic control means; iii) associating to said underlayer an array of LED sources addressable individually or in groups through said conductive paths, in which i) said LED sources are integrated in the form of chips, i.e., of elements obtained by dividing up a semiconductor wafer and without package, via technologies of the chip-on-board type; ii) said method envisages the use of the flip-chip technique for die bonding, i.e., the electrical connection of the chip to the underlayer.
Abstract:
Described herein is a transparent device for display of information superimposed on a background, said device comprising a plurality of LED sources, addressable individually or in groups through a series of conductive paths deposited on a transparent underlayer and connected to a control electronics, in which: i) said LED sources are integrated in the form of dice, i.e., of elements obtained by dividing up a semiconductor wafer and without package; and ii) at least one of said conductive paths is with interrupted stretches and replaced by stretches of metal wire, bonded to said paths through a wire-bonding operation.
Abstract:
An emitter (F) for incandescent light sources, in particular a filament, capable of being brought to incandescence by the passage of electric current is obtained in such a way as to have a value of spectral absorption α that is high in the visible region of the spectrum and low in the infrared region of the spectrum, said absorption α being defined as α=1−ρ−T, where ρ is the spectral reflectance and T is the spectral transmittance of the emitter.
Abstract translation:获得能够通过电流使其变成白炽灯的白炽光源(特别是灯丝)的发射极(F),其具有在可见光区域中具有高的光谱吸收α值 光谱的红外区域的光谱和低,所述吸收α被定义为α= 1-rho- T SMALLCAPS>,其中rho是光谱反射率,并且 T SMALLCAPS>是 发射体的光谱透射率。
Abstract:
A module for projecting a light beam comprises a light source and a substantially flat support surface on which the source is arranged in a manner such as to emit light from only one side of the surface, and a reflector for reflecting the light emitted by the source. The reflector comprises a curved reflecting surface which extends on one side of the support surface, has a concavity facing towards the support surface, and can reflect the light coming from the source in a principal direction substantially parallel to the support surface of the source. An optical device for a module according to the invention and a vehicle front light assembly comprising a plurality of modules according to the invention form further subjects of the invention.
Abstract:
The lighting device comprises a light source and an associated hollow reflector of transparent material having an internal surface and an external surface which are close to and far away from the source respectively. The inner surface of the reflector has in cross section at least one transverse plane passing through the source a discontinuous profile forming a plurality of adjacent steps each of which has a first face through which rays originating from the source can pass and a second face essentially parallel to the rays originating from the source. The outer surface of the reflector has a profile comprising one or more arcs of curves. The reflector is constructed and positioned in such a way that in the said transverse plane most of the rays emitted by the source are reflected through the first face of the steps on its inner surface and strike its outer surface undergoing total internal reflection and after passing back through the reflector emerge from it through the second faces of the steps on its inner surface undergoing a second refraction.