Abstract:
A composite rotary tool includes at least first and second regions comprising first and second materials, respectively. The first and second regions are autogenously bonded and differ with respect to at least one characteristic such as, for example, modulus of elasticity, hardness, wear resistance, fracture toughness, tensile strength, corrosion resistance, coefficient of thermal expansion, or coefficient of thermal conductivity. A method for producing the composite rotary tool includes placing a first metallurgical powder into a first region of a void of a mold, and placing a second metallurgical powder into a second region of the void. The first metallurgical powder differs from the second metallurgical powder, and at least a portion of the first metallurgical is brought into contact with the second metallurgical powder. The mold is compressed to consolidate the first and second metallurgical powders to form a compact, and the compact subsequently is sintered.
Abstract:
A resilient and corrosion and wear resistant component of tooling preferably used in the deep-drawing of aluminum and steel cans is disclosed. The tooling is comprised of a distinctive nickel-bonded cemented carbide having a density less than 13 grams per cubic centimeter, a hardness of at least 88 R.sub.a, a minimum transverse rupture strength of 250,000 p.s.i. and exhibiting essentially non-magnetic behavior. Preferred compositions for the material of the tooling are also given.
Abstract:
The invention comprises an alloy having improved intermediate temperature properties at temperatures up to about 316.degree. C. The alloy contains (by weight percent) about 1-6% X contained as an intermetallic phase in the form of Al.sub.3 X. X is at least one selected from the group consisting of Nb, Ti and Zr. The alloy also contains 0.1-4% strengthener selected from the group consisting of Si and Mg. In addition, the alloy contains about 1-4% C and 0.1-2% O present as aluminum carbides and oxides for grain stabilization.
Abstract:
The alloy of the invention has improved intermediate temperature properties at temperatures up to about 482.degree. C. The alloy contains (by weight percent) a total of about 6-12% X contained as an intermetallic phase in the form of Al.sub.3 X. X is selected from the group consisting of Nb, Ti and Zr. The alloy also contains about 0.1-4% strengthener selected from the group consisting of Co, Cr, Mn, Mo, Ni, Si, V, Nb when Nb is not selected as X and Zr when Zr is not selected as X. In addition, the alloy contains about 1-4% C and about 0.1-2% O.
Abstract:
A thread rolling die includes a thread rolling region comprising a working surface including a thread form. The thread rolling region of the thread rolling die comprises a sintered cemented carbide material having a hardness in the range of 78 HRA to 89 HRA. In certain embodiments, the thread rolling die may further include at least one non-cemented carbide piece metallurgically bonded to the thread rolling region in an area of the thread rolling region that does not prevent a workpiece from contacting the working surface, and wherein the non-cemented carbide piece comprises at least one of a metallic region and a metal matrix composite region. Methods of forming a thread rolling die as embodied herein are also disclosed.
Abstract:
Composite articles, including composite rotary cutting tools and composite rotary cutting tool blanks, and methods of making the articles are disclosed. The composite article includes an elongate portion. The elongate portion includes a first region composed of a first cemented carbide, and a second region autogenously bonded to the first region and composed of a second cemented carbide. At least one of the first cemented carbide and the second cemented carbide is a hybrid cemented carbide that includes a cemented carbide dispersed phase and a cemented carbide continuous phase. At least one of the cemented carbide dispersed phase and the cemented carbide continuous phase includes at least 0.5 percent by weight of cubic carbide based on the weight of the phase including the cubic carbide.
Abstract:
An article includes a working portion including cemented carbide, and a heat sink portion in thermal communication with the working portion. The heat sink portion includes a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide. Also disclosed are methods of making an article including a working portion comprising cemented carbide, and a heat sink portion in thermal communication with the working portion and including a heat sink material having a thermal conductivity that is greater than a thermal conductivity of the cemented carbide. The heat sink portion conducts heat from the working portion.
Abstract:
An earth boring cutting insert including a cemented carbide comprising metal carbide grains dispersed in a metallic binder including at least one of platinum, palladium, rhenium, rhodium, and ruthenium. Also disclosed is an earth boring bit such as, for example, a rotary-cone earth boring bit or a percussion bit, including at least one earth boring cutting insert comprising a cemented carbide including a metallic binder comprising at least one of platinum, palladium, rhenium, rhodium, and ruthenium
Abstract:
Binder compositions for use in forming a bit body of an earth-boring bit includes at least one of cobalt, nickel, and iron, and at least one melting point-reducing constituent selected from at least one of a transition metal carbide up to 60 weight percent, a transition metal boride up to 60 weight percent, and a transition metal silicide up to 60 weight percent, wherein the weight percentages are based on the total weight of the binder. Earth-boring bit bodies include a cemented tungsten carbide material comprising tungsten carbide and a metallic binder, wherein the tungsten carbide comprises greater than 75 volume percent of the cemented tungsten carbide material.
Abstract:
Methods for forming a wear resistant layer metallurgically bonded to at least a portion of a surface of a metallic substrate may generally comprise positioning hard particles adjacent the surface of the metallic substrate, and infiltrating the hard particles with a metallic binder material to form a wear resistant layer metallurgically bonded to the surface. In certain embodiments of the method, the infiltration temperature may be 50° C. to 100° C. greater than a liquidus temperature of the metallic binder material. The wear resistant layer may be formed on, for example, an exterior surface and/or an interior surface of the metallic substrate. Related wear resistant layers and articles of manufacture are also described.