摘要:
A determination method for reinitialization of a temporal sequence of fluoroscopic images of an examination region of an examination object is provided. The examination region comprises a vascular system including arteries and/or veins. An acquisition time is assigned to each of the images representing a given distribution of a substance in the examination region at the acquisition time. A computer receives the temporal sequence of the images, determines an evaluation image corresponding spatially on a pixel-by-pixel basis to the images, and calculates a differential value between a pixel of the evaluation image at a time and a pixel at a preceding time during a time characteristic of the sequence. A reinitialization of the temporal sequence of the images is performed at a specific time and thereafter the determination method is started over and/or repeated. The specific time is determined as a function of at least one previously calculated differential value.
摘要:
A method for computing a color-coded analysis image of an examination area of an examination object from a temporal sequence of fluoroscopic images of the examination area comprising a vascular system containing arteries and/or veins is provided. An acquisition time instant has been assigned to each of the fluoroscopic images representing a given distribution of a material embolizing some of the vascular system. The fluoroscopic image spatially corresponds to an analysis image pixel by pixel. A computer receives the fluoroscopic images with a color attribute assigned to each pixel of the analysis image at an image point and a time instant. If a pixel differs from a pixel at a preceding time instant, the color attribute assumes a color attribute of the time instant and the difference. If a pixel corresponds to a background color of the analysis image, the color attribute assumes a background color.
摘要:
A controller of an image-generating medical engineering assembly receives a selection of an image valuation method from a user. It subsequently automatically adjusts selection-specific, positioning-independent operating parameters of the recording arrangement and or provides the user with instructions for adjusting the positioning-independent operating parameters. In response to a user's start input the controller captures by means of a recording arrangement of the image-generating medical engineering assembly a sequence of successive two-dimensional images of an iteratively moving object being examined and capturing instants thereof as well as a phase signal of the object being examined and archives the sequence of images, capturing instants and the phase signal.
摘要:
A workflow for a minimally invasive intervention, such as a treatment for a cancerous tumor, includes positioning a patient at a multi-functional imaging apparatus, obtaining pre-interventional images of the anatomy of the patient using a computed tomography or angiography imaging function, performing the minimally invasive intervention while the patient is positioned at the multi-functional imaging apparatus and while using a fluoroscopic imaging function, and performing a post-interventional imaging of the patient's anatomy while the patient is positioned at the multi-functional imaging apparatus using the computed tomography or angiographic imaging function. If the post-interventional imaging determines that additional intervention is in order, the additional intervention is performed while the patient is positioned at the imaging apparatus. Pre-intervention images and data sets from other sources may be combined with or used during the intervention. A treatment planning step may be included following the pre-interventional imaging and the intervention.
摘要:
A computer receives a temporal sequence of x-ray images of an examination region of an examination object. The examination region includes a blood vessel system and tissue supplied with blood. A detection time is assigned in each instance to the x-ray images. The x-ray images correspond locally with one another in terms of pixels and each display a distribution of a contrast agent in the examination region at the respective detection time. The computer determines the temporal course of the temporal derivation of the data values and/or of the average value of the data values of the pixels located in the evaluation region for at least one evaluation region which is standard for all x-ray images. It assigns a type to the evaluation region as a function hereof.
摘要:
The invention relates to a method for post-processing a 3D image data set of a vessel structure of a human or animal body, in which a 2D DSA (Digital Subtraction Angiography) of the vessel structure is recorded and registered with the 3D image data set. The 2D DSA is compared with a corresponding projection image computed from the 3D data set and this is changed, e.g. by changing the segmentation parameters, to adapt it to the 2D DSA. This enables the outstanding local resolution of the 2D DSA to be used for improving the 3D image data set.
摘要:
The invention relates to a method for tomographically displaying a cavity by optical coherence tomography (OCT) and to an OCT device, wherein the path length of a measuring light beam in the catheter can change as a result of a movement of the catheter and brings about a change in the display scale, wherein a possible change in the path length of the measuring light beam in the event of a movement of the catheter is electronically determined and automatically compensated.
摘要:
2-D projection images show the variation over time of the distribution of a contrast medium in an examination subject. Each projection image comprises pixels having pixel values corresponding to one another in the projection images that are determined by identical areas of the examination subject. A computer subdivides an image that is to be displayed from the projection images into parcels in one perfusion region. For each parcel, the computer determines a characteristic value and, based on the characteristic value, a projection color. It assigns the projection color to the parcel. The characteristic value is determined based on the pixel values occurring in the parcel of the projection image or their differences from the pixel values of a corresponding parcel of another projection image. The computer outputs a subarea of the projection image containing the perfusion region. It represents each parcel of the perfusion region in its assigned projection color.
摘要:
The present invention relates to a method and to a device for visualizing objects, in particular non-rigid objects. The method and the device are particularly suitable to visualizing three-dimensional objects in the case of medical interventions.The method comprises: providing a three-dimensional image data record of the object, successively taking a series of two-dimensional image data records of the object, individually registering each individual two-dimensional image data record with the three-dimensional image data record, functionally evaluating functional parameters from the successively taken two-dimensional images, extracting two-dimensional projections from the three-dimensional image data record, and superimposing the recorded two-dimensional images with the extracted two-dimensional projections. A clean copy of the abstract that incorporates the above amendments is provided herewith on a separate page.
摘要:
A recording arrangement of an x-ray system comprises an x-ray source and an x-ray detector. Adjustment parameters can be manually supplied to the recording arrangement by an operator of the x-ray system, so that the x-ray source emits x-rays according to the manually given adjustment parameters and the x-ray detector accordingly acquires a sequence of images of an object. The manually supplied adjustment parameters can be automatically acquired by an acquisition device and stored in a remanent memory at least temporarily assigned to the acquisition device and remain stored after the completion of the acquisition of the sequence independently of a further operation of the x-ray system. The stored adjustment parameters can be retrieved from the remanent memory by the operator and supplied again to the recording arrangement so that a further sequence of images can be acquired according to the retrieved adjustment parameters.