Abstract:
A method and relay node for managing a plurality of relay nodes that is moving relative to a source network node, the method comprising: selecting a lead node; connecting the plurality of relay nodes to the lead node; and transmitting a signal to manage mobility of the plurality of relay nodes from the lead node to a network node.
Abstract:
A local wireless access network node receives a request to offload at least a portion of data traffic for a user equipment from a macro wireless access network node to the local wireless access network node, where the user equipment is to maintain a wireless connection to the macro wireless access network node after the offload. The local wireless access network node sends a response to indicate whether the local wireless access node has accepted or denied the request.
Abstract:
Systems and methods for user equipment (UE) for inter-device communication authorization and data sniffing in wireless communication systems are provided. A UE may communicate directly with another UE over a direct inter-device communication link when they are located in proximity. The UE may receive data sniffing related parameters corresponding to the inter-device communication link from a network entity, e.g. a mobile management entity (MME). The UE may store data exchanged over the inter-device communication link in a buffer and upload the stored data to a secure server in a network periodically or upon receiving a request from the network. Long term evolution (LTE) downlink or uplink radio resources may be used for the data exchange over the inter-device communication link.
Abstract:
Methods, systems and apparatus are provided for camping, assisted serving cell addition or removal, and discontinuous reception (DRX) in networks having a macro cell and at least one assisted serving cell. In other aspects, enhancements to Layer 1 channels and uplink timing alignments are provided in networks having a macro cell and at least one assisted serving cell. In further aspects, assisted serving cell Layer 2 architecture and transport channels are provided in networks having a macro cell and at least one assisted serving cell. In further aspects, collaborated HARQ solutions are provided in networks having a macro cell and at least one assisted serving cell.
Abstract:
Described herein is a network element with a processor. The processor is configured to promote transmitting a first physical resource block (PRB) pair that contains a first demodulation reference signal (DMRS) pattern. The processor is further configured to promote transmitting a second PRB pair that contains a second DMRS pattern. The first DMRS pattern is a subset of the second DMRS pattern.
Abstract:
There is provided a method and apparatus for coordinating cells in a heterogeneous network. A serving cell determines scheduling parameters for scheduling a UE intermittently between a serving cell and at least one coordinating cell. The scheduling parameters define a cycle for the UE in which the UE alternates between listening to the serving cell and each of the coordinating cells. Timing offsets between the serving cell and the coordinating cells is determined by a UE and reported back to the eNB of the serving cell.
Abstract:
Information associated with a communication condition of at least one cell in a cluster of cells is received, where the communication condition is at least one selected from among a traffic pattern and interference. In response to the received information, a coordinating network node selects an uplink-downlink configuration for use by the cells in the cluster.
Abstract:
A first wireless access network node sets a data rate for communication of data between a second wireless access network node and a user equipment (UE) that is concurrently connected to the first wireless access network node and the second wireless access network node. The first wireless access network node sends information relating to the data rate to the second wireless access network node for use by the second wireless access network node in controlling data communication between the second wireless access network node and the UE.
Abstract:
A method and network element for managing a relay node that is moving relative to a source network node, the method sending a handover request from a source network node to a target network node to prepare the handover at the target network node; sending a handover command from the source network node to the relay node without waiting for an acknowledgement of the handover request from the target network node; and detaching the relay node from the source network node.
Abstract:
A method is provided for communication in a wireless telecommunication network. The method comprises providing, by a network element, one of an uplink grant or a downlink grant to at least one UE that the network element has determined, based on information received from a plurality of UEs, is closer to the network element than is another UE, wherein the uplink grant is scheduled such that the UE transmits to the network element only during at least one flexible subframe, and wherein the downlink grant is scheduled such that the network element transmits to the UE only during at least one flexible subframe. The method further comprises transmitting, by the network element, to at least one UE that the network element has determined, based on information received from a plurality of UEs, is closer to the network element than is another UE, only during at least one flexible subframe.