Abstract:
The present disclosure relates to a communication technique for combining, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and to a system therefor. The present disclosure may be applied to an intelligent service (e.g., a smart home, a smart building, a smart city, a smart car or connected car, healthcare, digital education, retail business, security and safety-related service, etc.), based on a 5G communication technology and an IoT-related technology. The present disclosure suggests a method for effectively performing a standby mode operation in a next generation mobile communication, and a device therefor and, more particularly, to a method for efficiently reselecting a cell, and a device therefor. Also, the present disclosure relates to: a method for making a report, including beam measurement information, at the time of measurement reporting of a user equipment, and a device therefor; a method for performing measurement reporting by way of layer 1/layer 2 signaling, and a device therefor; and a method for changing between RRC modes including an RRC inactive mode, and a device therefor.
Abstract:
A data transmission method and an apparatus to communicate data on multiple carriers in the mobile communication system are provided. A random access method of a terminal in a mobile communication system including primary and secondary cells operating on multiple carriers according to the present invention includes communicating data after random access in the primary cell, receiving, when the random access is triggered in the secondary cell, information for use in the secondary cell random access from the primary cell, transmitting a preamble in the secondary cell based on the received information, monitoring the primary cell to receive a Random Access Response for the secondary cell, and applying, when the Random Access Response for the secondary cell is received, the information carried in the Random Access Response to the secondary cell in which the preamble has been transmitted.
Abstract:
The present disclosure relates to communication methods and systems for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system utilizing technology for Internet of Things (IoT). The present disclosure is applicable to intelligent services utilizing 5G communication technology and IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A Secondary Cell (SCell) method and apparatus for activating an SCell are provided for use in a mobile communication system supporting dual connectivity. The method includes receiving a control message instructing activation of at least one SCell, determining whether the SCell is a primary SCell (pSCell) based on the control message, monitoring, when the SCell is the pSCell, a Physical Downlink Control Channel (PDCCH) of the pSCell, and reporting, after starting PDCCH monitoring, Channel Status Information (CSI) for the SCell.
Abstract:
An apparatus and a method to apply 5G communication systems to IoT networks is provided. The apparatus includes technologies, such as a sensor network, machine type communication (MTC), and machine-to-machine (M2M) communication may be implemented by beamforming, multiple-input multiple-output (MIMO), and array antennas. Application of a cloud radio access network (RAN) as the above-described big data processing technology may also be considered to be as an example of convergence between the 5G technology and the IoT technology. The disclosure relates to a method and an apparatus for controlling network access in a next generation mobile communication system.
Abstract:
The disclosure relates to a communication technique and a system thereof that fuses a 5G communication system for supporting higher data rate after a 4G system. The disclosure is enabled to be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail, security and safety related services, etc.) based on 5G communication technology and IoT related technology. A method for performing a random access by a terminal is provided. The method includes receiving information for performing a random access from a base station (BS), determining a frequency band to perform the random access among a first frequency band and a second frequency band based on the information for performing the random access, and transmitting a first random access preamble to the BS on the determined frequency band.
Abstract:
The disclosure relates to a communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for Internet of things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method is provided for a terminal to transmit uplink data without a transmission resource previously allocated by a base station in a next generation mobile communication system. A method by a terminal includes while the terminal is in an inactive mode, receiving a paging message from a base station, identifying a paging identifier included in the paging message, if the paging identifier corresponds to a core network (CN) paging identifier, transmitting a first radio resource control (RRC) message, and if the paging identifier corresponds to a radio access network (RAN) paging identifier, transmitting a second RRC message.
Abstract:
Provided are a communication method and system that integrate 5G communication systems with IoT technologies to support higher data rates after 4G systems. The present disclosure is based on 5G communication technologies and IoT related technologies, and may be applied to intelligent services such as smart homes, smart buildings, smart cities, smart or connected cars, health care, digital education, retail, and security and safety.The present disclosure relates to a method and apparatus for reducing power consumption in an electronic device supporting machine type communication. There is provided a method of signal processing for an electronic device in a mobile communication system. The method may include: obtaining repetition level information for signal reception; determining a decoding start point and decoding period; and making, if the decoding start point arrives, an attempt to decode the repeatedly received signal at every decoding period on the basis of the repetition level information.
Abstract:
The present disclosure relates to a communication technique of fusing a 5G communication system for supporting higher data transmission rate beyond a 4G system with an IoT technology and a system thereof. The present disclosure may be applied to intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security and safety related service, or the like) based on the 5G communication technology and the IoT related technology. More specifically, a method of the present disclosure for providing multi-connection of a terminal using different radio access technologies in a wireless communication system comprises the steps of: transmitting/receiving data through a first bearer corresponding to a first communication; transmitting/receiving data through a second bearer corresponding to a second communication; receiving, from a base station, a radio resource control (RRC) message which directs reestablishment of the first bearer as the second bearer or reestablishment of the second bearer as the first bearer; and reestablishing the first bearer or the second bearer on the basis of the RRC message.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. An apparatus and method are provided for supporting a high data rate service. A method for an application server includes receiving, from a first terminal, a service request for a second terminal; identifying that the second terminal is in a power saving mode; and transmitting an early media service to the first terminal based on information related to the power saving mode of the second terminal.
Abstract:
The present invention relates to a method and an apparatus for performing operations of an eNB and a UE to effectively use a minimization of drive test (MDT) technology in a mobile communication system. The present invention provides a method for transmitting/receiving MDT measurement information of an eNB in a mobile communication system, the method comprising the steps of: configuring an MDT in a UE; collecting MDT measurement information from the UE; determining whether enhanced inter-cell interference coordination (eICIC) is configured in the UE in which the MDT is configured, and, when the eICIC is configured in the UE, reporting indication information indicating that the MDT measurement information is affected by the eICIC together with the MDT measurement information.