Abstract:
A micromechanical detection structure includes a substrate of semiconductor material and a driving-mass arrangement is coupled to a set of driving electrodes and driven in a driving movement following upon biasing of the set of driving electrodes. A first anchorage unit is coupled to the driving-mass arrangement for elastically coupling the driving-mass arrangement to the substrate at first anchorages. A driven-mass arrangement is elastically coupled to the driving-mass arrangement by a coupling unit and designed to be driven by the driving movement. A second anchorage unit is coupled to the driven-mass arrangement for elastically coupling the driven-mass arrangement to the substrate at second anchorages. Following upon the driving movement, the resultant of the forces and of the torques exerted on the substrate at the first and second anchorages is substantially zero.
Abstract:
A frequency modulation MEMS triaxial gyroscope, having two mobile masses; a first and a second driving body coupled to the mobile masses through elastic elements rigid in a first direction and compliant in a second direction transverse to the first direction; and a third and a fourth driving body coupled to the mobile masses through elastic elements rigid in the second direction and compliant in the first direction. A first and a second driving element are coupled to the first and second driving bodies for causing the mobile masses to translate in the first direction in phase opposition. A third and a fourth driving element are coupled to the third and fourth driving bodies for causing the mobile masses to translate in the second direction and in phase opposition. An out-of-plane driving element is coupled to the first and second mobile masses for causing a translation in a third direction, in phase opposition. Movement-sensing electrodes generate frequency signals as a function of external angular velocities.
Abstract:
A MEMS gyroscope is equipped with: at least a first mobile mass suspended from the top of a substrate by means of elastic suspension elements coupled to anchor points rigidly fixed to the substrate, in such a manner as to be actuated in an actuating movement along a first axis of a horizontal plane and to carry out a measurement movement along a vertical axis, transverse to the horizontal plane, in response to a first angular velocity acting about a second axis of the horizontal plane, transverse to the first axis. The elastic suspension elements are configured in such a manner as to internally compensate unwanted displacements out of the horizontal plane along the vertical axis originating from the actuating movement, such that the mobile mass remains in the horizontal plane during the actuating movement.
Abstract:
MEMS device having a support region elastically carrying a suspended mass through first elastic elements. A tuned dynamic absorber is elastically coupled to the suspended mass and configured to dampen quadrature forces acting on the suspended mass at the natural oscillation frequency of the dynamic absorber. The tuned dynamic absorber is formed by a damping mass coupled to the suspended mass through second elastic elements. In an embodiment, the suspended mass and the damping mass are formed in a same structural layer, for example of semiconductor material, and the damping mass is surrounded by the suspended mass.