Abstract:
A magnetoresistive tunnel-junction (MTJ) memory element includes a magnetic reference layer (RL), a magnetic free layer (FL), a tunneling barrier layer, which extends between the magnetic RL and the magnetic FL, and a diffusion-blocking layer (DBL), which extends on the magnetic FL. The includes at least one material selected from a group consisting of bismuth (Bi), antimony (Sb), osmium (Os), rhenium (Re), tin (Sn), rhodium (Rh), indium (In), and cadmium (Cd). An oxide capping layer is also provided on the DBL. The oxide layer may include at least one of strontium (Sr), scandium (Sc), beryllium (Be), calcium (Ca), yttrium (Y), zirconium (Zr), and hafnium (Hf).
Abstract:
A magnetic junction and method for providing the magnetic junction are described. The method includes providing a free layer, providing a pinned layer and providing a nonmagnetic spacer between the free and pinned layers. The free layer is switchable between stable magnetic states using a write current passed through the magnetic junction. At least one of the step of providing the free layer and the step of providing the pinned layer includes depositing a magnetic layer; depositing an adsorber layer on the magnetic layer and performing at least one anneal. The magnetic layer is amorphous as-deposited and includes an interstitial glass-promoting component. The adsorber layer attracts the interstitial glass-promoting component and has a lattice mismatch with the nonmagnetic spacer layer of not more than ten percent. Each of the anneal(s) is at a temperature greater than 300 degrees Celsius and not more than 425 degrees Celsius.
Abstract:
A magnetic memory including a plurality of magnetic junctions and at least one spin-orbit interaction (SO) active layer is described. Each of the magnetic junctions includes a pinned layer, a free layer and a nonmagnetic spacer layer between reference and free layers. The free layer has at least one of a tilted easy axis and a high damping constant. The tilted easy axis is at a nonzero acute angle from a direction perpendicular-to-plane. The high damping constant is at least 0.02. The at least one SO active layer is adjacent to the free layer and carries a current in-plane. The at least one SO active layer exerts a SO torque on the free layer due to the current. The free layer is switchable using the SO torque.
Abstract:
A magnetic tunnel junction device and a method to make the device are disclosed. The magnetic tunnel junction device comprises a first reference magnetic material layer, a tunnel barrier material layer, a free magnetic material layer between the first reference magnetic material layer and the tunnel barrier material layer, and a second reference magnetic material layer disposed on an opposite side of the tunnel barrier material layer from the free magnetic material layer, in which the second reference magnetic material layer is anti-magnetically exchanged coupled with the first reference magnetic material layer. A shift field Hshift experienced by the free magnetic material layer is substantially canceled by the anti-magnetic exchange coupling between the first reference magnetic material layer and the second reference magnetic material layer.
Abstract:
A method provides a magnetic junction having a top and sides. A first magnetic layer, a nonmagnetic spacer layer and a second magnetic layer are deposited. The nonmagnetic spacer layer is between the first and second magnetic layers. A free layer is one of the magnetic layers. A reference layer is the other of the magnetic layers. The second magnetic layer includes an amorphous magnetic layer having nonmagnetic constituent(s) that are glass-forming. An anneal is performed in a gas having an affinity for the nonmagnetic constituent(s). The gas includes at least one of first and second gases. The first gas forms a gaseous compound with the nonmagnetic constituent(s) The second gas forms a solid compound with the nonmagnetic constituent(s). The second gas is usable if the anneal is performed after the magnetic junction has been defined. The solid compound is at least on the sides of the magnetic junction.
Abstract:
A magnetic junction usable in magnetic devices is described. The magnetic junction includes at least one reference layer, at least one nonmagnetic spacer layer and a free layer. The nonmagnetic spacer layer(s) are between the reference layer(s) and the free layer. The free layer has a magnetic thermal stability coefficient having a plurality of magnetic thermal stability coefficient phases. A first phase magnetic thermal stability coefficient has a first slope below a first temperature. A second phase magnetic thermal stability coefficient has a second slope above the first temperature and below a second temperature greater than the first temperature. The first and second slopes are unequal at the first temperature. The magnetic thermal stability coefficient is zero only above the second temperature. The free layer is switchable between stable magnetic states when a write current passed through the magnetic junction.
Abstract:
A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. At least one of the pinned layer and the free layer includes a magnetic substructure. The magnetic substructure includes at least two magnetic layers interleaved with at least one insertion layer. Each of the at least one insertion layer includes at least one of Bi, W, I, Zn, Nb, Ag, Cd, Hf, Os, Mo, Ca, Hg, Sc, Y, Sr, Mg, Ti, Ba, K, Na, Rb, Pb, and Zr. The at least two magnetic layers are magnetically coupled.