Abstract:
A robot cleaner includes a plurality of motors each of which transmits a driving force, a pad assembly which is connected to one of the plurality of motors to receive a rotational force from the motor, to rotate in a clockwise or counterclockwise direction, and thus to clean a floor surface, and a wire which is connected to the pad assembly and another one of the plurality of motors so that the pad assembly is tilted by the driving force of the motor, wherein the robot cleaner moves in a particular direction by a non-uniform frictional force between a bottom surface of the pad assembly and the floor surface. The robot cleaner uses wires to tilt the pad assembly and, thus, it is possible to miniaturize the robot cleaner.
Abstract:
An image sensor and an image processing system including the same are provided. The image sensor includes a pixel array including a plurality of pixels each connected to one of first through m-th column lines to output a pixel signal, where “m” is an integer of at least 2; analog-to-digital converters each configured to receive the pixel signal corresponding to one of the first through m-th column lines, to compare the pixel signal with a ramp signal, and to convert the pixel signal to a digital pixel signal; and a blocking circuit connected to an input terminal of at least one of the analog-to-digital converters to block an influence of an operation of others among the analog-to-digital converters.
Abstract:
A robot cleaner which does not stop to change a traveling direction thereof, and a control method thereof includes setting a territory about which cleaning will be performed based on position data acquired during traveling about a cleaning area, predetermining a cleaning path to clean the territory about which cleaning will be performed, and if the cleaning path includes a zigzag traveling path, changing the traveling direction of the robot cleaner by executing curved traveling of the robot cleaner during traveling along the zigzag traveling path, thus decreasing the time required to clean an area during a change of the traveling direction of the robot cleaner.
Abstract:
A robot cleaner capable of moving in diverse directions and enhancing cleaning efficiency by increasing frictional force between a pad and a floor includes two or more driving units. Each of the driving units includes plural motors, a first subframe connected to at least any one of the motors and configured to rotate by receiving rotational force from the motor, a rotating plate assembly mounted to the first subframe and configured to be slanted with respect to a floor by rotation of the first subframe and to rotate clockwise or counterclockwise by receiving rotational force from another motor, and a pad provided at the rotating plate assembly and configured to contact the floor. When the rotating plate assembly is slanted with respect to the floor, nonuniform frictional force is generated between the pad and the floor, through which the robot cleaner travels.
Abstract:
Disclosed herein is an X-ray imaging apparatus including: a gate driver configured to apply a turn-on signal to a plurality of gate lines; and a readout circuit configured to read out a signal from the plurality of gate lines, wherein if an X-ray signal is detected from a gate line of the plurality of gate lines, the gate driver changes a turn-on time period of the turn-on signal.
Abstract:
A robot cleaner which does not stop to change a traveling direction thereof, and a control method thereof includes setting a territory about which cleaning will be performed based on position data acquired during traveling about a cleaning area, predetermining a cleaning path to clean the territory about which cleaning will be performed, and if the cleaning path includes a zigzag traveling path, changing the traveling direction of the robot cleaner by executing curved traveling of the robot cleaner during traveling along the zigzag traveling path, thus decreasing the time required to clean an area during a change of the traveling direction of the robot cleaner.
Abstract:
An illuminator, a scanner module and an image scanning apparatus are provided. The scanner module includes an illuminator that includes a light source, a light guide extending in a main scanning direction to change a direction of the light from the light source, a guide holder recessed with a light guide mounting portion in which the light guide is mounted, and at least one supporting protrusion protruding from an entrance of the light guide mounting portion into the light guide mounting portion to support the light guide received in the light guide mounting portion. As the light guide is supported by the supporting protrusion formed at the entrance of the light guide mounting portion, it is possible to reduce deformation of the light guide and/or to prevent the light guide from being falling out of the light guide mounting portion when subjected to, e.g., a shock.
Abstract:
An illuminator, a scanner module and an apparatus are provided. The scanner module includes an illuminator that includes a light source, a light guide extending in a main scanning direction to change a direction of the light from the light source, a guide holder recessed with a light guide mounting portion in which the light guide is mounted, and at least one supporting protrusion protruding from an entrance of the light guide mounting portion into the light guide mounting portion to support the light guide received in the light guide mounting portion. As the light guide is supported by the supporting protrusion formed at the entrance of the light guide mounting portion, it is possible to reduce deformation of the light guide and/or to prevent the light guide from being falling out of the light guide mounting portion when subjected to, e.g., a shock.
Abstract:
An illuminator, a scanner module and an image scanning apparatus are provided. The scanner module includes an illuminator that includes a light source, a light guide extending in a main scanning direction to change a direction of the light from the light source, a guide holder recessed with a light guide mounting portion in which the light guide is mounted, and at least one supporting protrusion protruding from an entrance of the light guide mounting portion into the light guide mounting portion to support the light guide received in the light guide mounting portion. As the light guide is supported by the supporting protrusion formed at the entrance of the light guide mounting portion, it is possible to reduce deformation of the light guide and/or to prevent the light guide from being falling out of the light guide mounting portion when subjected to, e.g., a shock.
Abstract:
An illuminator, a scanner module and an image scanning apparatus are provided. The scanner module includes an illuminator that includes a light source, a light guide extending in a main scanning direction to change a direction of the light from the light source, a guide holder recessed with a light guide mounting portion in which the light guide is mounted, and at least one supporting protrusion protruding from an entrance of the light guide mounting portion into the light guide mounting portion to support the light guide received in the light guide mounting portion. As the light guide is supported by the supporting protrusion formed at the entrance of the light guide mounting portion, it is possible to reduce deformation of the light guide and/or to prevent the light guide from being falling out of the light guide mounting portion when subjected to, e.g., a shock.