Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate after a 4G communication system such as LTE. In a wireless communication system of the present disclosure, a method for receiving, by a base station, a measurement result of a terminal includes: a process for allocating at least one of a plurality of measurement gaps, set for measuring a licensed band, for the measurement of an unlicensed band; a process for transmitting activation instruction information that instructs the activation of a measurement gap for the allocated unlicensed band measurement; and a process for receiving, from the terminal, a measurement result for the unlicensed band measured in the activated measurement gap by the terminal.
Abstract:
A method and an apparatus for controlling uplink power in a wireless communication system are provided. The method for controlling uplink power of a User Equipment (UE) forming a transmission link with a plurality of BSs (BSs), a power headroom report trigger event by at least one of the plurality of BSs is detected. Power headroom information of the UE is reported to at least one of the plurality of BSs.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for performing a paging process by a base station (BS) in a wireless communication system is provided. The method includes identifying that paging for a mobile station (MS) is initiated, and transmitting a paging indicator including a first part indicating a paging identifier (ID) and a second part indicating a group in which at least one MS which needs to receive a paging message is included.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for adding an operating channel for a user equipment (UE) that uses an unlicensed band channel by an evolved Node B (eNB) in a mobile communication system is provided. The method includes transmitting a first sensing indicator message indicating sensing of an unlicensed band channel, to at least one UE, determining a channel state by sensing the unlicensed band channel, receiving a first feedback message including a channel sensing result of the unlicensed band channel sensed by the UE, from the at least one UE, comparing the determined channel state with the channel sensing result received from the UE, and transmitting a control message indicating addition of the unlicensed band channel to the UE based on the comparison result.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method and an apparatus for operating a base station and a terminal in a wireless communication system using an unlicensed band are provided. The base station can determine at least one channel in at least one unlicensed band using one of a single channel operation and a multi-channel operation, acquire the at least one channel according to a data transmission request, and transmit a channel preservation signal until a start point of a first subframe transmitted on the acquired at least one channel.
Abstract:
A method for controlling a cell state corresponding to whether to transmit a signal, on a subframe basis by an evolved Node B (eNB) in a wireless communication system is provided. The method includes determining a cell state of at least one subframe included in each of an N-th frame and an (N−1)-th frame, and at the start of the N-th frame, transmitting to a user equipment (UE), information about cell states of all subframes belonging to the N-th frame and information about cell states of all subframes belonging to the (N−1)-th frame.
Abstract:
A method and an apparatus for controlling a waiting time related to determination of a radio link failure in a wireless communication system are provided. The method includes receiving a message from a network, if a first timer for determination of the radio link failure is running and the message includes timer information related to the waiting time, starting a second timer related to the waiting time based on the timer information, and if the second timer expires before expiration of the first timer, determining a channel situation of a serving cell as a situation of the radio link failure.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).A method of setting a handover parameter includes receiving, from a serving evolved NodeB (eNB), cell type information indicating eNB types of the serving eNB and eNBs adjacent to the serving eNB, and mobility information of the UE, detecting types of the serving eNB and a target eNB based on the cell type information, and setting a Time-To-Trigger (TTT) applied, the mobility information of the UE, and a received signal strength for the serving eNB.
Abstract:
A method for providing an in-vehicle notification service on a head unit device is provided. The method includes receiving a notification message including event information regarding an event from a mobile device, upon an occurrence of the event; generating an action request message requesting execution of an application related to the event based on the event information and transmitting the action request message to the mobile device; and displaying a Graphical User Interface (GUI) to a user according to the execution of the application.