Abstract:
The present disclosure relates to a communication technique of fusing a 5G communication system for supporting higher data transmission rate beyond a 4G system with an IoT technology and a system thereof. The system may be used for an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security and safety related service, or the like) based on the 5G communication technology and the IoT related technology. The present disclosure discloses a method and apparatus for inserting an index into a code block as a unit in which a channel code is executed and transmitting the same.
Abstract:
A method and an apparatus for transmitting/receiving feedback in a mobile communication system are provided. A method of configuring and receiving feedback information of an evolved Node B (eNB) includes transmitting configuration information on a plurality of reference signals including a first reference signal and a second reference signal to a User Equipment (UE); transmitting feedback configuration information including first feedback configuration information on the first reference signal and second feedback configuration information configured such that feedback information on the second reference signal is generated with reference to the first feedback configuration information to the UE; transmitting the reference signal to the UE according to the configuration information on the reference signal; and receiving feedback information including first feedback information according to the first feedback configuration information and second feedback information according to the second feedback configuration information from the UE.
Abstract:
Provided is a method of generating a Device-to-Device Synchronization Signal (D2DSS) by a terminal according to an embodiment of the present disclosure. The method includes determining a service attribute for identifying whether the terminal is serviced by at least one base station; and generating a D2DSS for identifying whether the terminal is serviced by the base station, based on the determination result. In addition, provided is a method of configuring D2D synchronization by a terminal according to an embodiment of the present disclosure. The method includes receiving a signal from at least one base station or another device; determining whether a synchronization signal is detected from the received signal; and when the synchronization signal is detected, configuring synchronization with the another device based on the timing reference of the detected synchronization signal.
Abstract:
A method of controlling power of a user equipment for device to device communication in a wireless communication system, and a user equipment thereof, are provided. The method includes receiving power control related information of the D2D communication from a Base Station (BS), determining transmission power of the UE based on maximum available power of the UE and the received power control related information of the D2D communication, and transmitting data according to the determined transmission power.
Abstract:
A method for allowing terminals to exchange discovery or synchronization signals to determine their presences among each other within a service area of a base station is provided. The method includes collecting multicast identifiers of another terminal for use in multicast communication, receiving a multicast control channel for Device-to-Device (D2D) multicast communication, performing Cyclic Redundancy Check (CRC) on the received multicast control channel using the collected multicast identifiers, and receiving, when the CRC is successful, the D2D multicast according to the multicast control channel. The D2D communication method and apparatus is advantageous in that the D2D terminal is capable of transmitting the discovery or synchronization signal to discover the neighbor terminals without disturbing downlink or uplink communication between the base station and the terminal, wherein the base station configures the resource for D2D communication so as to support D2D communication without an inter-device interference.
Abstract:
A scrambling sequence generation method and apparatus of a device supporting Device-to-Device communication are provided. The method includes acquiring at least one of an identifier of the device, an identifier of a counterpart device and a preconfigured value; determining an initial value of the scrambling sequence for the Device-to-Device communication based on the at least one of the identifier of the device, the identifier of the counterpart device, and the preconfigured value; and generating the scrambling sequence using the initial value.
Abstract:
Methods and apparatuses for signal transmission and reception are provided for a wireless communication system. A configuration for a plurality of physical downlink control channel (PDCCH) is transmitted to a terminal. Configurations for a plurality of physical uplink control channel (PUCCH) resources are transmitted to the terminal. Downlink control information (DCI) resources is transmitted to a terminal. Downlink control information (DCI) is transmitted to the terminal based on the configuration for the PDCCH. A physical downlink shared channel (PDSCH) is transmitted to the terminal. Uplink control information (UCI) including a hybrid automatic repeat request (HARQ) acknowledgement (ACK) information for the PDSCH is received from the terminal on the PUCCH resource based on the DCI.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention suggests a method for transmitting and receiving signals satisfying a maximum delay time, and a method and a device for effectively processing signals that are influenced by the transmission and reception of the signals satisfying the maximum delay time.
Abstract:
Methods and apparatuses for signal transmission and reception are provided for a wireless communication system. Information for configuring a plurality of physical uplink control channel (PUCCH) resources is transmitted to a terminal. Downlink control information (DCI) is transmitted to the terminal on a physical downlink control channel (PDCCH). The DCI includes a resource indicator for indicating a PUCCH resource among the plurality of PUCCH resources. Uplink control information (UCI) is received from the terminal on the PUCCH resource indicated by the resource indicator.
Abstract:
The present disclosure relates to a communication technique for fusing, with an IoT technology, a 5G communication system for supporting a higher data transfer rate than a 4G system, and a system therefor. The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security and safety-related services, on the basis of 5G communication technologies and IoT-related technologies. Disclosed is a setting method for an efficient uplink signal transmission of a terminal in a case where a plurality of waveforms are supported to efficiently operate an uplink in a next generation mobile communication.