Abstract:
Systems and methods for fault handling are presented. In one embodiment, a fault handling method includes: performing an information collection process, wherein the information collection process includes collecting information regarding guest operating system files of a virtual machine; performing a selective replication region identification process, wherein the selective replication region identification process includes identifying regions associated with a selective amount of the guest operating system files; and performing a replication process based upon result of the replication region identification process. In one embodiment, the selective replication region identification process includes identifying regions associated with files of interest. The selective replication region identification process can include identifying regions associated with temporary files. The information regarding files can include a list of regions used by the files after loopback mounting of a virtual disk file, a list of regions which have been modified on the virtual disk file and regions associated with metadata that has changed.
Abstract:
A computer-implemented method for facilitating long-distance live migrations of virtual machines may include: 1) identifying a request for a live migration of a virtual machine from a primary site to a secondary site, the primary site including a primary storage device used for storage by the virtual machine being configured for active-passive replication to a secondary storage device at the secondary site, 2) initiating a failover of the active-passive replication from the primary storage device to the secondary storage device in response to the request, 3) intercepting each write attempt made by the virtual machine at the secondary site to the secondary storage device before completion of the failover, 4) buffering each intercepted write attempt, 5) determining that the failover is complete, and 6) applying each buffered write attempt to the secondary storage after determining that the failover is complete. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
Methods and systems to implement a physical device to differentiate amongst multiple virtual machines (VM) of a computer system. The device may include a wireless network interface controller. VM differentiation may be performed with respect to configuration controls and/or data traffic. VM differentiation may be performed based on VM-specific identifiers (VM IDs). VM IDs may be identified within host application programming interface (API) headers of incoming configuration controls and data packets, and/or may be looked-up based on VM-specific MAC addresses associated with data packets. VM IDs may be inserted in API headers of outgoing controls and/or data packets to permit a host computer system to forward the controls and/or packets to appropriate VMs. VM IDs may be used look-up VM-specific configuration parameters and connection information to reconfigure the physical device on a per VM basis. VM IDs may be used look-up VM-specific security information with which to process data packets.
Abstract:
The present invention relates to a method of cloning stable stress tolerant superoxide dismutase from diverse plant species using universal primers.
Abstract:
An electronic circuit (200) for use with an accessing circuit (110) that supplies a given address and a partial write data portion and also has dummy cycles. The electronic circuit (200) includes a memory circuit (230) accessible at addresses, an address buffer (410), a data buffer (440) coupled to the memory circuit (230), and a control circuit (246) operable in the dummy cycles to read data from the memory circuit (230) to the data buffer (440) from a next address location in the memory circuit (230) and to store that next address in the address buffer (410). The electronic circuit further includes a multiplexer (430), a comparing circuit (420) responsive to the given address and a stored address in the address buffer (410), to operate the multiplexer (430) to pass data from the data buffer (440) or to pass data from the memory circuit (230) instead; and a mixer circuit (450) operable to put the partial write data portion into the data taken from the selected one of the data buffer (440) or memory circuit (230). Other circuits, devices, systems, processes of operation and processes of manufacture are also disclosed.
Abstract:
The present invention relates to pyridyl derivatives capable of inhibiting phosphatidylinositol-3-kinase (PI3k), mammalian target of rapamycin (mTOR) and/or hypoxia inducible factor 1α (HIF-1α) mediated signaling. Also disclosed are processes for preparation of the pyridyl derivatives, and their use in the manufacture of pharmaceutical compositions for the treatment of clinical conditions caused by deregulation of signaling pathways selected from one or more of PI3K, mTOR and HIF-1α pathways. The pyridyl derivatives are also useful for the treatment of conditions or disorders mediated by TNF-α.
Abstract:
The present invention provides a superoxide dismutase gene from Potentilla atrosanguinea, a construct containing the gene coding for superoxide dismutase and transformed E. coli producing the SOD protein.
Abstract:
An article involving encapsulation of one or more hygroscopic materials and manufacturing method and system thereof are provided. The article includes a first substrate, a second substrate, one or more first structures formed at a first periphery associated with the first substrate, and one or more second structures formed at a second periphery associated with the second substrate. The first structures and the second structures are engaged together mechanically to form an enclosure between the first substrate and the second substrate. The enclosure is capable of preventing exposure of a hygroscopic material encapsulated between the first substrate and the second substrate to the surrounding environment.
Abstract:
The present invention relates to signaling mechanisms that transduce magnetic inputs into physiological cellular outputs. More particularly, the present invention relates to systems and methods for non-invasively controlling cellular signaling functions and behaviors by harnessing receptor-mediated and intracellular molecular-mediated signal transduction using nanomagnetic cellular switches.
Abstract:
The present invention relates to a gel processing and transfer device, useful for the processing and transferring un-damaged and intact gel with minimal handling, said device comprising at least 4 separable components namely: a base plate for holding the gels with facility to drain out solution; a retaining rim with attached side-walls, said side walls are fastened to the base plate by a fastening means; at least one “O” ring fixed to the retaining rim to give leakproof arrangement with the base plate; and a lid to cover the assembly.