Abstract:
A method is provided for controlling a hybrid powertrain, comprising a combustion engine; a gearbox with input and output shafts; a first planetary gear connected to the input; a second planetary gear connected to the first planetary gear; first and second electrical machines capable of operating each other and respectively connected to the first planetary gear and to the second planetary gear; one gear pair connected with the first planetary gear and the output shaft; and one gear pair connected with the second planetary gear and the output shaft. The method comprising, while the combustion engine is operating: ensuring that gears are engaged in the one gear pair connected with the first planetary gear and the one gear pair connected with the second planetary gear, and activating the first and second electrical machines so that total emitted electrical power is zero and a torque is generated in the output shaft.
Abstract:
A method is provided to start a hybrid powertrain to optimize fuel consumption, wherein such hybrid powertrain comprises a combustion engine; a gearbox with input shaft and output shaft; a first planetary gear, connected to the input shaft and a first main shaft; a second planetary gear, connected to the first planetary gear and a second main shaft; first and second electrical machines respectively, connected to the first and second planetary gears; one gear pair connected with the first main shaft; and one gear pair connected with the second main shaft. The method comprising: ensuring that the moveable parts of each of the first and second planetary gears are respectively disconnected from each other; bringing the combustion engine to a predetermined engine speed (nice); and controlling the first and the second electrical machine in such a way that a desired torque (TDrv) is achieved in the output shaft.
Abstract:
A method is provided to control a hybrid powertrain that comprises: a combustion engine; a gearbox with input and output shafts; a first planetary gear connected to the input shaft and a first main shaft; a second planetary gear, connected to the first planetary gear and a second main shaft; first and second electrical machines, respectively connected to the first and second planetary gears; one gear pair connected with the first planetary gear and output shaft; and one gear pair connected with the second planetary gear and output shaft. The method comprises: disconnecting a first planetary wheel carrier and a first sun wheel or disconnecting a second planetary wheel carrier and a second sun wheel from each other; b) controlling the combustion engine to a predetermined engine speed; and c) controlling the first and second electrical machines so that a desired torque is achieved in the output shaft, while a requested total power consumption of the first and the second electrical machines is achieved.
Abstract:
A method for determining a measure of energy utilisation during operation of a vehicle (100) which has a first power source (101) for generating a first motive force for propulsion of the vehicle (100) in a first direction of travel, and has at least one first brake system which acts against movement of the vehicle (100) in the first direction of travel. For a first period of time when demand for motive force from the first power source is interrupted, estimating energy consumption during operation of the vehicle (100) without demanding brake force from the first brake system, and using the estimated energy consumption during operation of the vehicle (100), without demanding brake force from the first brake system, as a basis for determining a measure of energy utilisation during operation of the vehicle (100).
Abstract:
A method for controlling a drive system of a vehicle, the drive system including a combustion engine with an output shaft, a gearbox with an input shaft, an electrical machine including a stator and a rotor, and a planetary gear with a sun gear, a ring gear and a planet wheel carrier. The combustion engine may be active or inactive. A braking device may be active or passive. The planetary gear may be released or locked. The method includes arranging the planetary gear in the released state, the combustion engine in inactive state, the braking device in active state, and, when information on a requested torque for the operation of the vehicle is received, controlling the electrical machine to provide the requested torque with the combustion engine inactive, the braking device active and the planetary gear released.