Abstract:
A method for fabricating a MOSFET (e.g., a PMOS FET) includes providing a semiconductor substrate having surface characterized by a (110) surface orientation or (110) sidewall surfaces, forming a gate structure on the surface, and forming a source extension and a drain extension in the semiconductor substrate asymmetrically positioned with respect to the gate structure. An ion implantation process is performed at a non-zero tilt angle. At least one spacer and the gate electrode mask a portion of the surface during the ion implantation process such that the source extension and drain extension are asymmetrically positioned with respect to the gate structure by an asymmetry measure.
Abstract:
A method is provided for fabricating a semiconductor device on a semiconductor substrate. A plurality of narrow gate pitch transistors (NPTs) and wide gate pitch transistors (WPTs) are formed on and in the semiconductor substrate. The NPTs are spaced apart by a first distance, and the WPTs are spaced apart by a second distance greater than the first distance. A first stress liner layer is deposited overlying the NPTs, the WPTs and the semiconductor layer, an etch stop layer is deposited overlying the first stress liner layer, and a second stress liner layer is deposited overlying the etch stop layer. A portion of the second stress liner layer which overlies the WPTs is covered, and an exposed portion of the second stress liner layer which overlies the NPTs is removed to expose an exposed portion of the etch stop layer. The exposed portion of the etch stop layer which overlies the NPTs is removed.
Abstract:
By providing a hard mask layer stack including at least three different layers for patterning a gate electrode structure, constraints demanded by sophisticated lithography, as well as cap layer integrity, in a subsequent selective epitaxial growth process may be accomplished, thereby providing the potential for further device scaling of transistor devices requiring raised drain and source regions.
Abstract:
The height of epitaxially grown semiconductor regions in extremely scaled semiconductor devices may be adjusted individually for different device regions in that two or more epitaxial growth steps may be carried out, wherein an epitaxial growth mask selectively suppresses the formation of a semiconductor region in a specified device region. In other embodiments, a common epitaxial growth process may be used for two or more different device regions and subsequently a selective oxidation process may be performed on selected device regions so as to precisely reduce the height of the previously epitaxially grown semiconductor regions in the selected areas.
Abstract:
By using sidewall spacers adjacent to a gate electrode structure both as an epitaxial growth mask and an implantation mask, the complexity of a conventional process flow for forming raised drain and source regions may be significantly reduced, thereby reducing production costs and enhancing yield by lowering the defect rate.
Abstract:
The height of epitaxially grown semiconductor regions in extremely scaled semiconductor devices may be adjusted individually for different device regions in that two or more epitaxial growth steps may be carried out, wherein an epitaxial growth mask selectively suppresses the formation of a semiconductor region in a specified device region. In other embodiments, a common epitaxial growth process may be used for two or more different device regions and subsequently a selective oxidation process may be performed on selected device regions so as to precisely reduce the height of the previously epitaxially grown semiconductor regions in the selected areas.
Abstract:
By recessing a semiconductor layer, preferably by locally oxidizing the semiconductor layer, a stress-inducing material and/or a dopant species may be introduced into the thinned semiconductor layer in the vicinity of a gate electrode structure by means of a subsequent epitaxial growth process. In particular, the stress-inducing material formed adjacent to the gate electrode structure exerts compressive or tensile stress, depending on the type of material deposited, thereby also enhancing the mobility of the charge carriers in a channel region of the transistor element.
Abstract:
An insulated gate semiconductor device (100) having reduced gate resistance and a method for manufacturing the semiconductor device (100). A gate structure (112) is formed on a major surface (104) of a semiconductor substrate (102). Successive nitride spacers (118, 128) are formed adjacent the sidewalls of the gate structure (112). The nitride spacers (118, 128) are etched and recessed using a single etch to expose the upper portions (115A, 117A) of the gate structure (112). Source (132) and drain (134) regions are formed in the semiconductor substrate (102). Silicide regions (140, 142, 144) are formed on the top surface (109) and the exposed upper portions (115A, 117A) of the gate structure (112) and the source region (132) and the drain region (134). Electrodes (150, 152, 154) are formed in contact with the silicide (140, 142, 144) of the respective gate structure (112), source region (132), and the drain region (134).
Abstract:
A multilayer semiconductor structure includes a conductive via. The conductive via includes a pellet of metal having a high resistance to electromigration. The pellet is made from a conformal layer of copper or gold deposited over the via to form a copper or gold reservoir or contact located in the via. A barrier layer is provided between the reservoir and an insulating layer to prevent the pellet from diffusing into the insulating layer. The pellet can be formed by selective deposition or by etching a conformal layer. The conformal layer can be deposited by sputtering, collimated sputtering, chemical vapor deposition (CVD), dipping, evaporating, or by other means. The barrier layer and pellet may be etched by anisotropic dry etching, plasma-assisted etching, or other layer removal techniques.
Abstract:
A structure for patterning a polysilicon layer includes a TiN layer located above an amorphous silicon (a-Si) layer forming a TiN/a-Si stack. The TiN/a-Si stack is located above the polysilicon layer. The TiN layer serves as an ARC to reduce overexposure of the photoresist used to pattern the polysilicon layer, while the a-Si layer prevents contamination of the layer below the polysilicon layer.
Abstract translation:用于图案化多晶硅层的结构包括位于形成TiN / a-Si叠层的非晶硅(a-Si)层之上的TiN层。 TiN / a-Si堆叠位于多晶硅层上方。 TiN层用作ARC以减少用于图案化多晶硅层的光刻胶的过度曝光,而a-Si层防止多晶硅层下面的层的污染。