Abstract:
A storage element and storage devices containing the same, having a layered structure and being configured for storing information are disclosed. In one example, the storage element comprises a storage portion with a storage magnetization that is perpendicular to a film surface of the layered structure, wherein a direction of the storage magnetization is configured to change according to the information. The storage element also includes a fixed magnetization portion with reference magnetization serving as a reference to the storage magnetization, and an intermediate portion between the storage portion and the fixed magnetization portion that is made of a non-magnetic material. The fixed magnetization portion includes a laminated ferrimagnetic structure that comprises a first ferromagnetic layer, a second ferromagnetic layer, and a non-magnetic layer. The fixed magnetization portion includes a first magnetic material that is an alloy or a laminated structure including Pt, Co, and Y.
Abstract:
A storage element includes a layer structure including a storage layer having a direction of magnetization which changes according to information, a magnetization fixed layer having a fixed direction of magnetization, and an intermediate layer disposed therebetween, which intermediate layer contains a nonmagnetic material. The magnetization fixed layer has at least two ferromagnetic layers having a direction of magnetization tilted from a direction perpendicular to a film surface, which are laminated and magnetically coupled interposing a coupling layer therebetween. This configuration may effectively prevent divergence of magnetization reversal time due to directions of magnetization of the storage layer and the magnetization fixed layer being substantially parallel or antiparallel, reduce write errors, and enable writing operation in a short time.
Abstract:
A memory element includes a layered structure: a memory layer having a magnetization direction changed depending on information, the magnetization direction being changed by applying a current in a lamination direction of the layered structure to record the information in the memory layer, including a first ferromagnetic layer having a magnetization direction that is inclined from a direction perpendicular to a film face, a bonding layer laminated on the first ferromagnetic layer, and a second ferromagnetic layer laminated on the bonding layer and bonded to the first ferromagnetic layer via the bonding layer, having a magnetization direction that is inclined from the direction perpendicular to the film face, a magnetization-fixed layer having a fixed magnetization direction, an intermediate layer that is provided between the memory layer and the magnetization-fixed layer, and is contacted with the first ferromagnetic layer, and a cap layer that is contacted with the second ferromagnetic layer.
Abstract:
Provided is a storage cell that makes it possible to improve TMR characteristics, a storage device and a magnetic head that include the storage cell. The storage cell includes a layer structure including a storage layer in which a direction of magnetization is varied in correspondence with information, a magnetization pinned layer having magnetization that is perpendicular to a film surface and serves as a reference of information stored in the storage layer, and an intermediate layer that is provided between the storage layer and the magnetization pinned layer and is made of a nonmagnetic body. Carbon is inserted in the intermediate layer, and feeding a current in a laminating direction of the layer structure allows the direction of magnetization in the storage layer to be varied, to allow information to be recorded in the storage layer.
Abstract:
There is provided a storage element including a layered construction including a storage layer that has magnetization perpendicular to a surface of the storage layer and whose direction of magnetization is changed corresponding to information, a pinned magnetization layer that has magnetization perpendicular to a surface of the pinned magnetization layer and serves as a standard for information stored in the storage layer, and an insulating layer that is composed of a non-magnetic material and is provided between the storage layer and the pinned magnetization layer.
Abstract:
A router, includes: a routing table memory unit configured to store a routing table and be capable of reading and writing the routing table at any time, the routing table being destination information of a packet; a search engine unit which has a transfer information base memory unit and which is configured to search for a destination of the packet based on a transfer information base; a power supply unit configured to supply power to the routing table memory unit and the transfer information base memory unit; and a control unit configured to control the power supply unit such that the power is supplied to the non-volatile memory when the non-volatile memory is operated, and the power supply is interrupted when the non-volatile memory is not operated.
Abstract:
A magnetic memory with a memory layer having magnetization, the direction of magnetization of which changes according to information recorded therein; a reference layer having a fixed magnetization against which magnetization of the memory layer can be compared; a nonmagnetization layer between the memory layer and the reference layer; and an electrode on one side of the memory layer facing away from the reference layer, wherein, the memory device memorizes the information by reversal of the magnetization of the memory layer by a spin torque generated when a current flows between the memory layer, the nonmagnetization layer and the reference layer, and a heat conductivity of a center portion of the electrode is lower than a heat conductivity of surroundings thereof. The memory and reference preferably have vertical magnetizations.
Abstract:
A storage element includes a magnetization fixed layer, and a magnetization free layer. The magnetization fixed layer includes a plurality of ferromagnetic layers laminated together with a coupling layer formed between each pair of adjacent ferromagnetic layers. The magnetization directions of the ferromagnetic layers are inclined with respect to a magnetization direction of the magnetization fixed layer.
Abstract:
Provided is an information storage element comprising a first layer, an insulation layer coupled to the first layer, and a second layer coupled to the insulation layer opposite the first layer. The first layer has a transverse length that is approximately 45 nm or less, or an area that is approximately 1,600 nm2 or less, so as to be capable of storing information according to a magnetization state of a magnetic material. The magnetization state is configured to be changed by a current. The insulation layer includes a non-magnetic material. The second layer includes a fixed magnetization so as to be capable of serving as a reference of the first layer.
Abstract:
A memory element includes a layered structure: a memory layer having a changeable magnetization direction, the magnetization direction being changed by applying a current in a lamination direction of the layered structure to record the information in the memory layer, including a first ferromagnetic layer having a magnetization direction that is inclined from a direction perpendicular to a film face, a bonding layer laminated on the first ferromagnetic layer, and a second ferromagnetic layer laminated on the bonding layer and bonded to the first ferromagnetic layer via the bonding layer, having a magnetization direction that is inclined from the direction perpendicular to the film face, a magnetization-fixed layer having a fixed magnetization direction, an intermediate layer that is provided between the memory layer and the magnetization-fixed layer, and is contacted with the first ferromagnetic layer, and a cap layer that is contacted with the second ferromagnetic layer.