摘要:
A method of horizontal ribbon growth from a melt includes forming a leading edge of the ribbon using radiative cooling on a surface of the melt, drawing the ribbon in a first direction along the surface of the melt, and removing heat radiated from the melt in a region adjacent the leading edge of the ribbon at a heat removal rate that is greater than a heat flow through the melt into the ribbon.
摘要:
A melt of a material is cooled and a sheet of the material is formed in the melt. This sheet is transported, cut into at least one segment, and cooled in a cooling chamber. The material may be Si, Si and Ge, Ga, or GaN. The cooling is configured to prevent stress or strain to the segment. In one instance, the cooling chamber has gas cooling.
摘要:
An apparatus to purify a melt is disclosed. A first portion of a melt in a chamber is frozen in a first direction. A fraction of the first portion is melted in the first direction. A second portion of the melt remains frozen. The melt flows from the chamber and the second portion is removed from the chamber. The freezing concentrates solutes in the melt and second portion. The second portion may be a slug with a high solute concentration. This system may be incorporated into a sheet forming apparatus with other components such as, for example, pumps, filters, or particle traps.
摘要:
The present invention is directed to a method and a system for clamping a wafer to a J-R electrostatic chuck using a single-phase square wave AC clamping voltage. The method comprises determining a single-phase square wave clamping voltage for the J-R electrostatic chuck, wherein the determination is based, at least in part, on a minimum residual clamping force associated with the wafer and the electrostatic chuck and a surface topography of a leaky dielectric layer associated therewith. The wafer is placed on the electrostatic chuck; and the determined clamping voltage is applied to the electrostatic chuck, therein electrostatically clamping the wafer to the electrostatic chuck, wherein at least the minimum residual clamping force is maintained during a polarity switch of the single-phase square wave clamping voltage. The determination of the surface topography comprises a first gap and a second gap between the wafer and the electrostatic chuck and an island area ratio, wherein a difference in RC time constants associated with the respective first gap and second gap is provided such that at least the minimum residual clamping force is maintained during the polarity switch. Upon removal of the square wave clamping voltage, the de-clamping time is substantially reduced, and corresponds to the pulse width of the square wave clamping voltage.
摘要:
A method for use with a plasma immersion ion implantations systems wherein a substrate W having a patterned photoresist P thereon is implanted. The method includes ionizing a first gas in a chamber 12 to produce electrically inactive ions and reacting the electrically active ions with the photoresist P to produce outgassing 64. The outgassed material 64 is continuously evacuated until outgassing is substantially completed. The method further includes ionizing a second gas to produce electrically active ions and implanting a positively charged species of the electrically active ions into the substrate. Also disclosed is a method for curing the photoresist prior to ion implantation. A gas is ionized in the chamber 12 to produce positively and electrons. The electrons are first attracted to a substrate in the chamber having patterned photoresist P thereon for hardening the photoresist. The positively charged ions are then implanted into substrate W wherein photoresist outgassing is substantially prevented.
摘要:
A plasma-enhanced electron shower (62) for an ion implantation system (10) is provided, including a target (64) provided with a chamber (84) at least partially defined by a replaceable graphite liner (82). A filament assembly (67) attached to the target generates and directs a supply of primary electrons toward a surface (118) provided by the graphite liner, which is biased to a low negative voltage of up to -10V (approximately -6V) to insure that secondary electrons emitted therefrom as a result of impacting primary electrons have a uniform low energy. The filament assembly (67) includes a filament (68) for thermionically emitting primary electrons; a biased (-300V) filament electrode (70) for focusing the emitted primary electrons, and a grounded extraction aperture (72) for extracting the focused primary electrons toward the graphite surface (118). A gas nozzle (77) attached to the target (64) introduces into the chamber a supply of gas molecules to be ionized by the primary electrons. The direction of the nozzle is set with respect to the filament assembly (67) to maximize the ionization rate of the gas molecules.
摘要:
An apparatus to purify a melt is disclosed. A first portion of a melt in a chamber is frozen in a first direction. A fraction of the first portion is melted in the first direction. A second portion of the melt remains frozen. The melt flows from the chamber and the second portion is removed from the chamber. The freezing concentrates solutes in the melt and second portion. The second portion may be a slug with a high solute concentration. This system may be incorporated into a sheet forming apparatus with other components such as, for example, pumps, filters, or particle traps.
摘要:
A sheet measurement apparatus has a sheet disposed in a melt. The measurement system uses a beam to determine a dimension of the sheet. This dimension may be, for example, height or width. The beam may be, for example, collimated light, a laser, x-rays, or gamma rays. The production of the sheet may be altered based on the measurements.
摘要:
The embodiments herein relate to a sheet production apparatus. A vessel is configured to hold a melt of a material and a cooling plate is disposed proximate the melt. This cooling plate configured to form a sheet of the material on the melt. A pump is used. In one instance, this pump includes a gas source and a conduit in fluid communication with the gas source. In another instance, this pump injects a gas into a melt. The gas can raise the melt or provide momentum to the melt.
摘要:
An electromagnet and related ion implanter system including active field containment are disclosed. The electromagnet provides a dipole magnetic field within a tall, large gap with minimum distortion and degradation of strength. In one embodiment, an electromagnet for modifying an ion beam includes: a ferromagnetic box structure including six sides; an opening in each of a first side and a second opposing side of the ferromagnetic box structure for passage of the ion beam therethrough; and a plurality of current-carrying wires having a path along an inner surface of the ferromagnetic box structure, the inner surface including the first side and the second opposing side and a third side and a fourth opposing side, wherein the plurality of current-carrying wires are positioned to pass around each of the openings of the first and second opposing sides.