Abstract:
Method and apparatus for curing a composite laminate. The apparatus comprising an electromagnetic radiation source creating electromagnetic microwave energy in an enclosed volume and a heating source for providing a convective airflow in the enclosed volume. A composite laminate assembly comprising a composite laminate is placed in the enclosed volume, wherein the composite laminate of the composite laminate assembly is cured by both the electromagnetic microwave energy created by the electromagnetic radiation source, and the convective airflow provided by the heating source. A vacuum bag may be placed over the composite laminate assembly. A source may be activated such that a vacuum within the vacuum bag is created according to design specifications.
Abstract:
Method and apparatus for curing a composite laminate. The apparatus comprising an electromagnetic radiation source creating electromagnetic microwave energy in an enclosed volume and a heating source for providing a convective airflow in the enclosed volume. A composite laminate assembly comprising a composite laminate is placed in the enclosed volume, wherein the composite laminate of the composite laminate assembly is cured by both the electromagnetic microwave energy created by the electromagnetic radiation source, and the convective airflow provided by the heating source. A vacuum bag may be placed over the composite laminate assembly. A source may be activated such that a vacuum within the vacuum bag is created according to design specifications.
Abstract:
Systems and processes that integrate thermoplastic and shape memory alloy materials to form an adaptive composite structure capable of changing its shape. For example, the adaptive composite structure may be designed to serve as a multifunctional adaptive wing flight control surface. Other applications for such adaptive composite structures include in variable area fan nozzles, winglets, fairings, elevators, rudders, or other aircraft components having an aerodynamic surface whose shape is preferably controllable. The material systems can be integrated by means of overbraiding (interwoven) with tows of both thermoplastic and shape memory alloy materials or separate layers of each material can be consolidated (e.g., using induction heating) to make a flight control surface that does not require separate actuation.
Abstract:
Methods and systems for determining optical properties for light transmitted mediums are provided. One method includes acquiring one or more measured values indicative of a reflectance for a material, acquiring one or more measured values indicative of a transmittance for the material, and determining a set of calculated values for an index of refraction coefficient and an extinction coefficient from the one or more measured values indicative of reflectance and transmittance, respectively. The method includes identifying a calculated value from the set of calculated values for the index of refraction coefficient and a calculated value from the set of calculated values for the extinction coefficient that are within a threshold determined by the difference between the one or more measured values indicative of the reflectance or transmittance and a predicted reflectance or transmittance, respectively. The method includes determining a reflectance and transmittance for the material using the calculated values.
Abstract:
A window clamp system and method are to secure a window pane to a window frame of a vehicle. The window clamp system includes a mounting bracket configured to be secured to the window frame, one or more ratchets coupled to the mounting bracket, and a spring clip configured to move in relation to the mounting bracket and the one or more ratchets. The spring clip is configured to engage a seal positioned around the window pane.
Abstract:
Provided are assemblies having composite structures interlocked with shape memory alloy structures and methods of fabricating such assemblies. Interlocking may involve inserting an interlocking protrusion of a shape memory alloy structure into an interlocking opening of a composite structure and heating at least this protrusion of the shape memory alloy structure to activate the alloy and change the shape of the protrusion. This shape change engages the protrusion in the opening such that the protrusion cannot be removed from the opening. The shape memory alloy structure may be specifically trained prior to forming an assembly using a combination of thermal cycling and deformation to achieve specific pre-activation and post-activation shapes. The pre-activation shape allows inserting the interlocking protrusion into the opening, while the post-activation shape engages the interlocking protrusion within the opening. As such, activation of the shape memory alloy interlocks the two structures.
Abstract:
Systems and processes that integrate thermoplastic and shape memory alloy materials to form an adaptive composite structure capable of changing its shape. For example, the adaptive composite structure may be designed to serve as a multifunctional adaptive wing flight control surface. Other applications for such adaptive composite structures include in variable area fan nozzles, winglets, fairings, elevators, rudders, or other aircraft components having an aerodynamic surface whose shape is preferably controllable. The material systems can be integrated by means of overbraiding (interwoven) with tows of both thermoplastic and shape memory alloy materials or separate layers of each material can be consolidated (e.g., using induction heating) to make a flight control surface that does not require separate actuation.
Abstract:
Systems and methods for curing complex fiber-reinforced composite structures utilize two distinct heat sources. A first heat source is utilized for heating a complex fiber-reinforced composite structure from within an internal portion of the complex fiber-reinforced composite structure. A second heat source is utilized for heating the complex fiber-reinforced composite structure from an external surface of the complex fiber-reinforced composite structure.
Abstract:
A thermal barrier apparatus for a window system includes a closed curve-shaped plate having a plurality of concentric channels, a plurality of walls each defining adjacent concentric channels, each of the walls including a plurality of openings between adjacent concentric channels, an outer wall formed on an outer peripheral edge of the closed curve-shaped plate, the outer wall including a plurality of openings, and an inner wall formed on an inner peripheral edge of the closed curve-shaped plate including a plurality of openings. The plurality of openings and concentric channels are configured to provide an air flow path for conduction of air through the thermal barrier apparatus to an exterior of the thermal barrier apparatus.
Abstract:
Aspects of the present disclosure generally relate to an SMA actuator that includes a cooling device disposed within a torque tube. In one aspect, the cooling device includes a sliding sleeve, an expandable sleeve, and plurality of cooling fins coupled to the expandable sleeve. Axial movement of the sliding sleeve relative to the expandable sleeve facilitates radial expansion of the expandable sleeve and urges the cooling fins into contact with the torque tube. The cooling fins function as heat sinks when in contact with the torque tube to facilitate the removal of heat from the torque tube to increase the cooling rate of the torque tube. During heating of the torque tube, the cooling fins may be spaced apart from the torque tube to reduce the thermal mass that is heated, thus increasing the heating rate of the torque tube.