Abstract:
An imaging system, such as a surgical microscope, laparoscope, or endoscope or integrated with these devices, includes an illuminator providing patterned white light and/or fluorescent stimulus light. The system receives and images light hyperspectrally, in embodiments using a hyperspectral imaging array, and/or using narrowband tunable filters for passing filtered received light to an imager. Embodiments may construct a 3-D surface model from stereo images, and will estimate optical properties of the target using images taken in patterned light or using other approximations obtained from white light exposures. Hyperspectral images taken under stimulus light are displayed as fluorescent images, and corrected for optical properties of tissue to provide quantitative maps of fluorophore concentration. Spectral information from hyperspectral images is processed to provide depth of fluorophore below the tissue surface. Quantitative images of fluorescence at depth are also prepared. The images are displayed to a surgeon for use in surgery.
Abstract:
A surgical guidance system has two cameras to provide stereo image stream of a surgical field; and a stereo viewer. The system has a 3D surface extraction module that generates a first 3D model of the surgical field from the stereo image streams; a registration module for co-registering annotating data with the first 3D model; and a stereo image enhancer for graphically overlaying at least part of the annotating data onto the stereo image stream to form an enhanced stereo image stream for display, where the enhanced stereo stream enhances a surgeon's perception of the surgical field. The registration module has an alignment refiner to adjust registration of the annotating data with the 3D model based upon matching of features within the 3D model and features within the annotating data; and in an embodiment, a deformation modeler to deform the annotating data based upon a determined tissue deformation.
Abstract:
A system for, and method of, extracting a surface profile from a stereo pair of images obtained at an arbitrary setting S of an optical system, includes determining surface profile reconstruction parameters for images obtained with the optical system at a reference setting So of the optical system; determining warping parameters for a digital image processor for warping images obtained with the optical system at the arbitrary setting S into images corresponding to the reference setting So; obtaining the stereo pair of images from at least one camera of the optical system; warping the stereo pair of images into images corresponding to the reference setting So, and using the surface profile reconstruction parameters to determine the surface profile. In a particular embodiment, the surface profile is passed to a computer model of tissue deformation and used to determine an intra-surgery location of a tumor or other anatomic feature of tissue.
Abstract:
An imaging system includes an illumination device for illuminating a target. A surgical microscope receives light from the target, the surgical microscope comprising at least one optical output port at which at least a portion of the received light is provided as an output from the surgical microscope. A tunable filter receives the portion of the received light provided as the output from the surgical microscope, the tunable filter being tunable to pass a filtered portion of the received light, the filtered portion of the received light having a plurality of wavelengths selected by the tunable filter and provided as output from the tunable filter. A high-resolution, broad-bandwidth electronic camera receives the light of a plurality of wavelengths selected by the tunable filter, the electronic camera converting the light of a plurality of wavelengths selected by the tunable filter to a plurality of electrical signals. A processor processes the plurality of electrical signals to form an image of the target.
Abstract:
A system for, and method of, extracting a surface profile from a stereo pair of images obtained at an arbitrary setting S of an optical system, includes determining surface profile reconstruction parameters for images obtained with the optical system at a reference setting So of the optical system; determining warping parameters for a digital image processor for warping images obtained with the optical system at the arbitrary setting S into images corresponding to the reference setting So; obtaining the stereo pair of images from at least one camera of the optical system; warping the stereo pair of images into images corresponding to the reference setting So, and using the surface profile reconstruction parameters to determine the surface profile. In a particular embodiment, the surface profile is passed to a computer model of tissue deformation and used to determine an intra-surgery location of a tumor or other anatomic feature of tissue.
Abstract:
An optical spectroscopy probe for providing optical spectroscopy guidance of a mechanical biopsy procedure, and a tissue biopsy device including an optical spectroscopy probe. The optical spectroscopy probe is positionable in a lumen of a mechanical biopsy device. The probe may enable optical spectroscopy guidance in biopsy procedures, include brain biopsy procedures.
Abstract:
An optical spectroscopy probe for providing optical spectroscopy guidance of a mechanical biopsy procedure, and a tissue biopsy device including an optical spectroscopy probe. The optical spectroscopy probe is positionable in a lumen of a mechanical biopsy device. The probe may enable optical spectroscopy guidance in biopsy procedures, include brain biopsy procedures.