Abstract:
A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
Abstract:
An imaging system includes an illumination device for illuminating a target. A surgical microscope receives light from the target, the surgical microscope comprising at least one optical output port at which at least a portion of the received light is provided as an output from the surgical microscope. A tunable filter receives the portion of the received light provided as the output from the surgical microscope, the tunable filter being tunable to pass a filtered portion of the received light, the filtered portion of the received light having a plurality of wavelengths selected by the tunable filter and provided as output from the tunable filter. A high-resolution, broad-bandwidth electronic camera receives the light of a plurality of wavelengths selected by the tunable filter, the electronic camera converting the light of a plurality of wavelengths selected by the tunable filter to a plurality of electrical signals. A processor processes the plurality of electrical signals to form an image of the target.
Abstract:
A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
Abstract:
A method and device for determining the depth and fluorophore concentration of a fluorophore concentration below the surface of an optically absorbing and scattering medium suitable for use in fluorescence-based surgical guidance such as in tumor resection is described. Long-wavelength stimulus light us used to obtain deep tissue penetration. Recovery of depth is performed by fitting measured modulation amplitudes for each spatial frequency to precomputed modulation amplitudes in a table of modulation amplitudes indexed by optical parameters and depth.
Abstract:
An imaging system, such as a surgical microscope, laparoscope, or endoscope or integrated with these devices, includes an illuminator providing patterned white light and/or fluorescent stimulus light. The system receives and images light hyperspectrally, in embodiments using a hyperspectral imaging array, and/or using narrowband tunable filters for passing filtered received light to an imager. Embodiments may construct a 3-D surface model from stereo images, and will estimate optical properties of the target using images taken in patterned light or using other approximations obtained from white light exposures. Hyperspectral images taken under stimulus light are displayed as fluorescent images, and corrected for optical properties of tissue to provide quantitative maps of fluorophore concentration. Spectral information from hyperspectral images is processed to provide depth of fluorophore below the tissue surface. Quantitative images of fluorescence at depth are also prepared. The images are displayed to a surgeon for use in surgery.
Abstract:
A surgical guidance system has two cameras to provide stereo image stream of a surgical field; and a stereo viewer. The system has a 3D surface extraction module that generates a first 3D model of the surgical field from the stereo image streams; a registration module for co-registering annotating data with the first 3D model; and a stereo image enhancer for graphically overlaying at least part of the annotating data onto the stereo image stream to form an enhanced stereo image stream for display, where the enhanced stereo stream enhances a surgeon's perception of the surgical field. The registration module has an alignment refiner to adjust registration of the annotating data with the 3D model based upon matching of features within the 3D model and features within the annotating data; and in an embodiment, a deformation modeler to deform the annotating data based upon a determined tissue deformation.
Abstract:
A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
Abstract:
A surgical guidance system has two cameras to provide stereo image stream of a surgical field; and a stereo viewer. The system has a 3D surface extraction module that generates a first 3D model of the surgical field from the stereo image streams; a registration module for co-registering annotating data with the first 3D model; and a stereo image enhancer for graphically overlaying at least part of the annotating data onto the stereo image stream to form an enhanced stereo image stream for display, where the enhanced stereo stream enhances a surgeon's perception of the surgical field. The registration module has an alignment refiner to adjust registration of the annotating data with the 3D model based upon matching of features within the 3D model and features within the annotating data; and in an embodiment, a deformation modeler to deform the annotating data based upon a determined tissue deformation.
Abstract:
A birefringent spectral demultiplexer for hyperspectral imaging includes N birefringent beamsplitting stages arranged along a light propagation path, to produce 2N mutually divergent output light beams. Each of the output light beams differs from every other one of the output light beams in polarization and/or spectral bandwidth. Each birefringent beamsplitting stage includes a retarder for modifying polarization of each light beam received by the birefringent beamsplitting stage, and a Wollaston prism for splitting each light beam into two orthogonally polarized and divergent light beams. The Wollaston prism has a beamsplitting interface arranged at an oblique angle to the light propagation path. The oblique angle of the beamsplitting interface of each Wollaston prism of the series, except for the first one, is smaller than the oblique angle of the beamsplitting interface of each preceding Wollaston prism. The demultiplexer may be configured to accept input light of any polarization.
Abstract:
A method and device for determining the depth and fluorophore concentration of a fluorophore concentration below the surface of an optically absorbing and scattering medium suitable for use in fluorescence-based surgical guidance such as in tumor resection is described. Long-wavelength stimulus light us used to obtain deep tissue penetration. Recovery of depth is performed by fitting measured modulation amplitudes for each spatial frequency to precomputed modulation amplitudes in a table of modulation amplitudes indexed by optical parameters and depth.