Abstract:
A system for, and method of, extracting a surface profile from a stereo pair of images obtained at an arbitrary setting S of an optical system, includes determining surface profile reconstruction parameters for images obtained with the optical system at a reference setting So of the optical system; determining warping parameters for a digital image processor for warping images obtained with the optical system at the arbitrary setting S into images corresponding to the reference setting So; obtaining the stereo pair of images from at least one camera of the optical system; warping the stereo pair of images into images corresponding to the reference setting So, and using the surface profile reconstruction parameters to determine the surface profile. In a particular embodiment, the surface profile is passed to a computer model of tissue deformation and used to determine an intra-surgery location of a tumor or other anatomic feature of tissue.
Abstract:
A system for, and method of, extracting a surface profile from a stereo pair of images obtained at an arbitrary setting S of an optical system, includes determining surface profile reconstruction parameters for images obtained with the optical system at a reference setting So of the optical system; determining warping parameters for a digital image processor for warping images obtained with the optical system at the arbitrary setting S into images corresponding to the reference setting So; obtaining the stereo pair of images from at least one camera of the optical system; warping the stereo pair of images into images corresponding to the reference setting So, and using the surface profile reconstruction parameters to determine the surface profile. In a particular embodiment, the surface profile is passed to a computer model of tissue deformation and used to determine an intra-surgery location of a tumor or other anatomic feature of tissue.
Abstract:
A system and method for determining intraoperative locations of a lesion in tissue from lesion locations determined in preoperative imaging includes determining three dimensional locations of surface features of the organ in the preoperative images. A preoperative surface map is extracted from stereo images annotated with surface features from preoperative images. An intraoperative surface map of the organ is extracted from stereo images, and surface features are identified in the stereo images corresponding to surface features annotated into the preoperative surface map. Three dimensional displacements of the surface features are determined and used to constrain a computer model of deformation of the organ. In embodiments, the model of deformation is adapted or constrained to model locations and dimensions of surgical cavities using an optical flow method and/or locations of surgical instruments in the organ. The model of deformation is used to determine intraoperative locations for the lesion.
Abstract:
A system and method for determining intraoperative locations of a lesion in tissue from lesion locations determined in preoperative imaging includes determining three dimensional locations of surface features of the organ in the preoperative images. A preoperative surface map is extracted from stereo images annotated with surface features from preoperative images. An intraoperative surface map of the organ is extracted from stereo images, and surface features are identified in the stereo images corresponding to surface features annotated into the preoperative surface map. Three dimensional displacements of the surface features are determined and used to constrain a computer model of deformation of the organ. In embodiments, the model of deformation is adapted or constrained to model locations and dimensions of surgical cavities using an optical flow method and/or locations of surgical instruments in the organ. The model of deformation is used to determine intraoperative locations for the lesion.