Abstract:
An imaging unit includes a mount unit, an imaging element unit, a plurality of elastic members, a plurality of adjusting screws, and at least one restricting member. The mount unit is configured to support the interchangeable lens unit. The imaging element unit is disposed apart from the mount unit and is configured to produce image data for the subject by opto-electrical conversion. The plurality of elastic members is disposed in a compressed state between the mount unit and the imaging element unit. The plurality of adjusting screws is mounted to the mount unit and/or the imaging element unit to adjust the distance between the mount unit and the imaging element unit. The restricting member is mounted to the mount unit and/or the imaging element unit and configured to restrict the imaging element unit from moving close to the mount unit against the elastic force of the elastic members.
Abstract:
A close attachment region is provided on the outer side relative to an outer edge portion of a gas diffusion layer and on the inner side relative to the inner edge portion of a gasket as seen from the thickness direction of a polymer electrolyte membrane, such that separators and a frame member are closely attached to each other. Thus, it becomes possible to suppress an increase in the manufacturing cost and a reduction in the power generation performance, which is attributed to the impurity eluted from the gasket and flowing toward the gas diffusion layer.
Abstract:
According to a compressor of the present invention, the compressor further comprises an oil separating mechanism 40 which separates oil from the refrigerant gas discharged from the compressing mechanism 10, the oil separating mechanism 40 includes a cylindrical space 41 in which the refrigerant gas orbits, an inflow portion 42 for flowing the refrigerant gas discharged from the compressing mechanism 10 into the cylindrical space 41, a sending-out port 43 for sending out, from the cylindrical space 41 to the one container space 32, the refrigerant gas from which the oil is separated, and an exhaust port 44 for discharging the separated oil and a portion of the refrigerant gas from the cylindrical space 41, and a center of the sending-out port 43 is deviated in a direction opposite from the inflow portion 42 from a center axis of the cylindrical space 41.
Abstract:
An armrest includes a stationary shaft, fixed to a seat frame, the shaft is inserted and is rotatable about an armrest body, a spring wound around the shaft, one end of the spring being a stationary-side hook locked to the armrest, the other spring end being a free-side hook, a hook-supporting part supporting the free-side hook in a raised direction of the shaft, a hook-joint enlarging a spring diameter by dropping the free-side hook on the hook-supporting part downward in the axial direction of the shaft, and a cam on the shaft 2 and having an unlocking cam part for unlocking the spring by dropping the free-side hook from the hook-supporting part into the hook-joint when the armrest body is rotated, and a relocking cam part for locking the spring by raising the free-side hook from the hook-joint and supporting it by the hook-supporting part when the armrest body is rotated.
Abstract:
To provide a design support device of a three-dimensional integrated circuit capable of, in the case where a placement position of a through-via changes in the design phase of a three-dimensional integrated circuit composed of a plurality of semiconductor chips in layers, avoiding change of respective placement positions of other parts as much as possible. A design support device 400 includes a TSV placement unit 437 that determines respective placement positions of through-vias on one semiconductor chip, the through-bias each penetrating to connect to another semiconductor chip, a TSV reserved cell placement unit 439 that determines, based on the respective placement positions of the through-vias, respective placement positions of reserved cells as respective spare placement positions of the through-vias, and a mask data generation unit 445 that generates layout data that includes the respective placement positions of the through-vias and the respective placement positions of the reserved cells.
Abstract:
a First gap (15) in a thrust direction between teeth bottoms of a fixed mirror plate (2b) and teeth tips of an orbiting lap (4a), and a second gap (16) in the thrust direction between teeth bottoms of an orbiting mirror plate 4b and teeth tips of a fixed lap (2a) are formed such as to gradually increase from an outer peripheral side to an inner peripheral side of a scroll compressor, the first gap (15) is made greater than the second gap (16). Contact surface pressures of the laps (2a) and (4a) are kept low with respect to pressure formation, contact pressure of the teeth tips of the fixed scroll part (2) and the teeth bottoms of the orbiting scroll part (4)are equally maintained. With this loads applied to the scroll parts (2) and (4)are equally received by a thrust surface.
Abstract:
In the method of the invention for producing an electrode-membrane-frame assembly, its principal part is formed by laying a first catalyst layer onto one of surfaces of an electrolyte membrane, arranging a first gas diffusion layer onto the surface of the first catalyst layer and inside the circumferential region of the electrolyte membrane, laying a second catalyst layer onto the other surface of the electrolyte membrane, and arranging a second gas diffusion layer onto the surface of the second catalyst layer and inside the circumferential region of the electrolyte membrane so as to make the position of the outer circumference of the second gas diffusion layer different from that of the outer circumference of the first gas diffusion layer. Then, in the state that an outer circumferential portion of either the first gas diffusion layer or the second gas diffusion layer, the portion being positioned outside a region of the first and second gas diffusion layers wherein the two layers are opposed to each other, is opposed to a portion of a flat region located inside the frame of a frame-form primary molded body, the circumferential region of the principal part is arranged on the flat region, and subsequently a secondary molded body is formed to cover the circumferential region of the electrolyte membrane with the second molded body together with the primary molded body, in order to prevent the polymer electrolyte membrane from being broken or deformed.
Abstract:
A lap (201) of an orbiting scroll (21) and a lap (202) of a stationary scroll (22) are meshed with each other to form an inner wall side expansion chamber (203a) on the side of a lap inner wall (201a) of the orbiting scroll (21) and an outer wall side expansion chamber (203b) on the side of a lap outer wall (201a) of the orbiting scroll (21). The volumetric capacity of the inner wall side expansion chamber (203a) and that of the outer wall side expansion chamber (203b) are equal to each other when suction is completed, and different from each other when discharge starts, and their expansion ratios are different from each other.
Abstract:
A MEA-frame assembly is arranged in a mold for injection molding to form a first flow passage arranged so as to extend along the outer periphery of an electrode between the outer periphery of the electrode and the inner periphery of a frame, a second flow passage arranged so as to extend along an inner elastic member between the inner periphery and outer periphery of the frame and a plurality of connecting flow passages which communicate the first flow passage with the second flow passage. An elastic resin is injected into the first flow passage to fill the first flow passage with the elastic resin and to fill the second flow passage with the elastic resin through each of the communicating flow passages, thereby an elastic member which hermetically seals the space between the MEA-frame assembly and the separator is integrally formed.
Abstract:
In a manufacturing method for an electrode-membrane-frame assembly in a fuel cell, a first frame member and an electrolyte membrane member are arranged in a first mold for injection molding such that the edge of the electrolyte membrane member is arranged on the first frame member, a second mold is arranged to form a resin flow passage for forming a second frame member which is in contact with the first frame member by interposing the electrolyte membrane member, and a part of the edge of the electrolyte membrane member is pressed and fixed to the first frame member by a presser member mounted on the second mold and a molding resin material is injected into the resin flow passage to form a second frame member.