摘要:
An electric torque converter mounted on a parallel hybrid vehicle employing a parallel hybrid system, using both an internal combustion engine and an electric motor for propulsion, includes an electric motor generator, and a composition-and-distribution mechanism located between the engine and a transmission for mechanically combining torque produced by the engine and torque produced by the motor generator with each other and for mechanically distributing the torque produced by the engine into the motor generator and a transmission input shaft. A converter case of the electric torque converter has a first casing member partitioning the transmission from the electric torque converter, a second casing member located between the engine and the transmission for partitioning the electric torque converter from the exterior, and a third casing member partitioning the motor generator from the composition-and-distribution mechanism. The third casing member has a large-diameter portion fixed to the first casing member, a medium-diameter portion housing therein the composition-and-distribution mechanism and placing therearound a motor generator rotor so that part of the motor generator rotor overlaps with the composition-and-distribution mechanism in a radial direction, and a small-diameter portion whose inner periphery rotatably supports a motor generator rotor support arranged coaxially with the transmission input shaft.
摘要:
A cooling unit 20 is provided in the vicinity of a cell 10, and includes a sealed portion 22 formed by sealing a sheet 21. An easy-to-open portion 24 is provided in part of the sealed portion 22, and the easy-to-open portion 24 is opened when the cell 10 abnormally generates heat.
摘要:
A battery module 100 includes a plurality of cells 10, wherein a cooling unit 20 in which a coolant is sealed is disposed in the vicinity of the cells 10, the coolant is liquid adjusted to have a viscosity within the range of 2 Pa·s to 350 Pa·s, and the cooling unit 20 includes an unsealable portion 23 which is partially unsealed to release the coolant when at least one of the cells 10 abnormally generates heat.
摘要:
A battery pack includes: a plurality of secondary batteries; a housing for containing the secondary batteries; and at least one heat insulating layer for separating the secondary batteries from one another. The at least one heat insulating layer includes a foam material capable of foaming at a first predetermined temperature of 110° C. or more and less than 200° C. When the foam material foams, gas bubbles are produced in the heat insulating layer, so that the thickness of the heat insulating layer increases. The battery pack thus has excellent safety, exhibiting a high heat insulation effect in the event of abnormal heat generation of the batteries.
摘要:
A lithium ion secondary battery includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator interposed between the positive electrode and the negative electrode. The separator includes a polyolefin layer and an oxidation-resistant layer. The oxidation-resistant layer includes an oxidation-resistant polymer. A main chain of the oxidation-resistant polymer does not include a —CH2— group and a —CH(CH3)— group. The oxidation-resistant layer faces the positive electrode.
摘要:
In a lithium ion secondary battery including a flat-plate electrode assembly which is configured by stacking the positive electrode, the separator, and the negative electrode in the thickness direction thereof, each of the positive electrode and the negative electrode includes a current collector and an active material layer. Each of the current collector includes a substantially rectangular current collector body, a heat radiating portion, and a lead portion, and the heat radiating portions are projected toward the outside of the electrode assembly so as not to overlap with each other in the thickness direction of the electrode assembly. In this way, heat caused inside the lithium ion secondary battery can be diffused efficiently to the outside, and safety of the lithium ion secondary battery can be further increased, without complicating the battery structure and decreasing mechanical strength of the battery.
摘要:
Methods for evaluating battery safety under internal short-circuit conditions are improved to eliminate variations in evaluation results and accurately evaluate battery safety under internal short-circuit conditions. An internal short-circuit is caused in a battery by using an internal short-circuit causing method in which battery information obtained upon the occurrence of an internal short-circuit hardly changes with the structure of the battery. At this time, the battery information is detected to accurately evaluate the safety of the battery upon the internal short-circuit and identify the safety level.
摘要:
The present invention relates to an internal short circuit evaluation method for a battery including an electrode group including a positive electrode plate, a negative electrode plate and a separator disposed between the positive electrode plate and the negative electrode plate, and an outer jacket covering the electrode group, the method including the steps of: (I) processing the electrode group to a predetermined position of the electrode group, from the outside of the electrode group toward the inside thereof; and (II) causing a short circuit between a portion of the electrode plate and a portion of the negative electrode plate of the electrode group that are located inside from the predetermined position, and measuring battery information that is changed by the short circuit, and an evaluation apparatus used for the above-described method.
摘要:
The nonaqueous solvent for a nonaqueous secondary battery of the present invention includes: a fluorinated cyclic carbonate having at least one fluorine in each designated location in the molecule; and a fluorinated phosphazene having at least one fluorine bound to a phosphorus atom in the phosphazene molecule and a ratio of the number of fluorine atoms to the number of phosphorus atoms being 4/3 or more. The fluorinated cyclic carbonate forms a good protective coat by reductive decomposition at a negative electrode, thereby improving cycle characteristics of the nonaqueous secondary battery. The fluorinated phosphazene suppresses generation of organic ions in the nonaqueous solvent, thereby reducing gas production in the nonaqueous secondary battery.
摘要:
The nonaqueous solvent of the present invention for a nonaqueous secondary battery primarily contains a mixed solvent of a fluorinated cyclic carbonate having a structure in which one fluorine atom is bonded to each of two alkoxy group carbon atoms adjacent to carbonate oxygen atoms and a fluorinated acyclic carbonate having a similar structure. The fluorinated cyclic carbonate, in comparison with the unsubstituted cyclic carbonate, has not only an enhanced thermal stability but also a suppressed reactivity with the positive electrode in a charged state even at elevated temperatures. In addition, it forms a protective film which, with respect to a negative electrode in a charged state, suppresses reactivity between the negative electrode and the nonaqueous electrolyte solution. The fluorinated acyclic carbonate suppresses the reactivity with the positive electrode in a charged state and also lowers the viscosity of the nonaqueous electrolyte solution.