摘要:
A method for producing a semiconductor device (20) is disclosed. The semiconductor device (20) includes: 1) a semiconductor substrate (1, 2), 2) a hetero semiconductor area (3) configured to contact a first main face (1A) of the semiconductor substrate (1, 2) and different from the semiconductor substrate (1, 2) in band gap, 3) a gate electrode (7) contacting, via a gate insulating film (6), a part of a junction part (13) between the hetero semiconductor area (3) and the semiconductor substrate (1, 2), 4) a source electrode (8) configured to connect to the hetero semiconductor area (3), and 5) a drain electrode (9) configured to make an ohmic connection with the semiconductor substrate (1, 2). The method includes the following sequential operations: i) forming the gate insulating film (6); and ii) nitriding the gate insulating film (6).
摘要:
A semiconductor device, includes: 1) a semiconductor base having a first face; 2) a hetero semiconductor region configured to contact the first face of the semiconductor base and different from the semiconductor base in band gap, the semiconductor base and the hetero semiconductor region defining therebetween a junction part in the hetero semiconductor region, a concentration of an impurity introduced in at least a first certain region including the junction part being less than or equal to a solid solution limit to a semiconductor material included in the hetero semiconductor region; 3) a gate electrode formed, via a gate insulation film, in a certain position adjacent to the junction part; 4) a source electrode configured to be connected to the hetero semiconductor region; and 5) a drain electrode configured to be connected to the semiconductor base.
摘要:
A trench is formed extending from a surface of a hetero semiconductor region of a polycrystal silicon to the drain region. Further, a driving point of the field effect transistor, where a gate insulating film, the hetero semiconductor region and the drain region are adjoined, is formed at a position spaced apart from a side wall of the trench.
摘要:
A semiconductor device, includes: a first conductivity-semiconductor substrate; a hetero semiconductor region for forming a hetero junction with the first conductivity-semiconductor substrate; a gate electrode adjacent to a part of the hetero junction by way of a gate insulating film; a drain electrode connecting to the first conductivity-semiconductor substrate; a source electrode connecting to the hetero semiconductor region; and a second conductivity-semiconductor region formed on a part of a first face of the first conductivity-semiconductor substrate in such a configuration as to oppose the gate electrode via the gate insulating film, the gate insulating film, the hetero semiconductor region and the first conductivity-semiconductor substrate contacting each other to thereby form a triple contact point. A first face of the second conductivity-semiconductor region has such an impurity concentration that allows a field from the gate electrode to form an inversion layer on the first face of the second conductivity-semiconductor region.
摘要:
A method of manufacturing a semiconductor device is disclosed. The semiconductor device includes a semiconductor body of a first conductivity type, a hetero semiconductor region adjacent to one main surface of the semiconductor body and having a band gap different from that of the semiconductor body, and a gate electrode formed in a junction portion between the hetero semiconductor region and the semiconductor body through a gate insulating film. The method includes a first process of forming a predetermined trench by using a mask layer having a predetermined opening on one main surface side of the semiconductor body, a second process of forming a buried region adjacent to at least a side wall of the trench and so as to extend from the trench, a third process of forming a hetero semiconductor layer so as to adjoin the semiconductor body and the buried region, and a fourth process of forming the hetero semiconductor region by patterning the hetero semiconductor layer.
摘要:
A high reverse voltage diode includes a hetero junction made up from a silicon carbide base layer, which constitutes a first semiconductor base layer, and a polycrystalline silicon layer, which constitutes a second semiconductor layer, and whose band gap is different from that of the silicon carbide base layer. A low concentration N type polycrystalline silicon layer is deposited on a first main surface side of the silicon carbide base layer, and a metal electrode is formed on a second main surface side of the silicon carbide base layer which is opposite to the first main surface side thereof.
摘要:
A method of manufacturing a semiconductor device having: forming a hetero semiconductor layer on at least the major surface of the semiconductor substrate body of a first conductivity type; etching the hetero semiconductor layer selectively by use of a mask layer having openings in way that the hetero semiconductor layer remains to be not etched with a predetermined thickness; oxidizing an exposed parts of the hetero semiconductor layer; forming the hetero semiconductor region by etching a oxidized film formed in the oxidizing; and forming the gate insulating film in a way that the gate insulating film makes an intimate contact with the hetero semiconductor region and the semiconductor substrate body. The bandgap of the hetero semiconductor layer is different from that of the semiconductor substrate body. The gate electrode is arranged in a junction part between the hetero semiconductor region and the semiconductor substrate body with the gate insulating film interposed between the gate electrode and the junction part.
摘要:
A method of manufacturing a semiconductor device having: forming a hetero semiconductor layer on at least the major surface of the semiconductor substrate body of a first conductivity type; etching the hetero semiconductor layer selectively by use of a mask layer having openings in way that the hetero semiconductor layer remains to be not etched with a predetermined thickness; oxidizing an exposed parts of the hetero semiconductor layer; forming the hetero semiconductor region by etching a oxidized film formed in the oxidizing; and forming the gate insulating film in a way that the gate insulating film makes an intimate contact with the hetero semiconductor region and the semiconductor substrate body. The bandgap of the hetero semiconductor layer is different from that of the semiconductor substrate body. The gate electrode is arranged in a junction part between the hetero semiconductor region and the semiconductor substrate body with the gate insulating film interposed between the gate electrode and the junction part.
摘要:
A method for producing a semiconductor device includes forming a first hetero-semiconductor layer as a hetero-junction to a surface of a silicon carbide epitaxial layer. This layer is composed of polycrystalline silicon having a band gap different from that of the silicon carbide epitaxial layer. An etching stopper layer composed of a material having a different etching rate from that of the polycrystalline silicon is formed on the surface of the first hetero-semiconductor layer. A second hetero-semiconductor layer composed of polycrystalline silicon is formed so that the second hetero-semiconductor layer contacts the surface of the first hetero-semiconductor layer and the etching stopper layer. The etching stopper layer is removed, the first hetero-semiconductor layer is thermally oxidized, and the thermally oxidized portion is then removed.
摘要:
A hetero semiconductor corner region, which is a current-concentration relief region that keeps a reverse bias current from concentrating on the convex corner, is arranged in a hetero semiconductor region. Thereby, a current concentration on the convex corner can be prevented. As a result, an interrupting performance can be improved at the time of interruption, and at the same time, the generation of the hot spot where in a specific portion is prevented at the time of conduction to suppress deterioration in a specific portion, thereby ensuring a long-term reliability. Further, when the semiconductor chip is used in an L load circuit or the like, for example, at the time of conduction or during a transient response time to the interrupted state, in an index such as a short resistant load amount and an avalanche resistant amount, which are indexes of a breakdown tolerance when overcurrent or overvoltage occurs, the current concentration on a specific portion can be prevented, and thus, these breakdown tolerances can also be improved.