摘要:
Crystalline inorganic oxide compositions having regular wormhole-like channels are described. The formation of the mesoporous composition is accomplished by hydrogen bonding between a neutral amine template in water and a water miscible organic solvent and a neutral inorganic oxide precursor, wherein there is an excess of an alkanol or water used to dissolve the template. The template can be removed and recycled.
摘要:
The present invention relates to particulate concentrate compositions formed by intercalation of a polymer polymerizing component into the galleries of a layered inorganic cation exchange composition initially in proton exchanged form and to the use of the particulate concentrates for the preparation of cured polymer-inorganic nanolayer hybrid composite compositions. The polymer polymerizing component comprising the particulate concentrate contains a basic group for reaction with the protons of the inorganic cation exchanger. Also, the polymer polymerizing component contains a functional group for polymerization reaction with a polymer precursor, a mixture of polymer precursors, or a polymer melt which is introduced into the galleries of the inorganic cation exchanger and reacts with the polymer polymerizing component to form a cured polymer-inorganic nanolayer hybrid composite. In the most preferred embodiment of the invention the layered inorganic composition is selected from the family of 2:1 layered silicate cation exchangers.
摘要:
A method for the preparation of new quasi-crystalline, porous inorganic oxide materials possessing uniform framework-confined mesopores in the range 2.0-10.0 nm and large elementary particle size of more than 500.0 nm. The method uses an interaction between various nonionic polyethylene oxide based surfactants (N.degree.) and neutral inorganic oxide precursors (I.sunburst.) at ambient reaction temperatures. The materials formed exhibit semi-ordered arrays of well defined pores owing to the specific mechanism of self-assembly, large pore wall thicknesses of at least 2.0 nm producing highly stable materials and large particle sizes incorporating large numbers of pores. This (N.degree. I.degree.) templating approach introduces several new concepts to mesostructure synthesis. The application of the low-cost, non-toxic and biodegradable surfactants and ambient reaction temperatures, introduces environmentally clean synthetic techniques to the formation of mesostructures. Recovery of the template can be achieved through solvent extraction where the solvent may be water or ethanol.
摘要:
The use of base/clay composites materials as sorbents for the removal of SO.sub.2 and SO.sub.3 (SO.sub.x) from flue gas and other sulfur containing gas streams is described. The base is either an alkaline earth metal carbonate (eg. CaCO.sub.3) or hydroxide (eg. Ca(OH).sub.2) is incorporated onto the clay by precipitating from corresponding metal oxide (eg. CaO) in an aqueous clay slurry. A second metal oxide or oxide precursor, preferably selected from transition metal ions, capable of promoting the oxidation of sulfur dioxide to sulfur trioxide, is incorporated to the base/clay composite during the synthesis in the form of finely divided metal oxide powder, metal oxide sol, water soluble metal salt or as clay-intercalated metal cation. The use of clay as dispersing agent for both the basic oxide and the second metal oxide component decreases the particle agglomeration of base particles and increases the rate of SO.sub.x uptake compared to the bulk bases in current use.
摘要:
The preparation and the use of base/clay composites materials as sorbents for the removal of SO.sub.2 and SO.sub.3 (SO.sub.x) from flue gas and other sulfur containing gas streams is described. The base is either an alkaline earth metal carbonate (e.g. CaCO.sub.3) or hydroxide (e.g. Ca(OH).sub.2) and is incorporated onto the clay by hydrating a dry physical mixture of an alkaline earth metal oxide, a smectite clay and a second metal oxide, or metal oxide precursor to form a powdered composite material. The second metal oxide, preferably selected from transition metal ions, act as an oxidation catalyst for the conversion of sulfur dioxide to sulfur trioxide. The use of clay as dispersing agent for both the basic oxide and the catalytic oxide component decreases the particle agglomeration of base particles and increases the rate of SO.sub.x uptake compared to the bulk bases in current use.
摘要:
A method for preparing and using compositions including a smectite clay and a base or base precursor which reacts with SO.sub.x in a hot flue gas is described. The base or base precursor is preferably the dispersed phase in the bulk phase of the clay. The compositions are heated to form the base which reacts with SO.sub.x in the flue gas.
摘要:
A process of removing noxious sulfur oxides from gas streams using heated layered double hydroxide (LDH) sorbents is described. The sorbent compositions contain metal components incorporated into the galleries of the LDH structures in the form of metal-containing oxo-anions, to promote the oxidation of sulfur dioxide.
摘要:
Dried compositions of inorganic metal oxide and clay particles wherein the oxide particles are substantially segregated from each other by the clay particles are described. The compositions have a high surface area and are useful for catalytic gaseous reactions and removal of impurities from gas.
摘要:
A process for preparing a stable pillared layered lattice clay, comprising the steps of preparing a hydrolyzed solution of ferric ion by reacting a solution of a salt of the said metal with a base at temperatures in the range of 22.degree. to 28.degree. C. and aging the solution within said temperature range to develop the hydrolyzed pillaring agent, contacting an aqueous slurry of a layer lattice clay selected from the group consisting of smectites, vermiculite, and flurohectorite, with said hydrolyzed solution, and recovering the intercalated pillared clay product. The resultant pillared clay product has a unit clay cell containing from 6.1 to 9.8 ferric ions per cell, and has a repeating spacing of from about 22 to 28 Angstroms. The product is particularly useful in catalyzing conversion processes such as the well-known Fischer-Tropsch process.