摘要:
Methods for display of recombinant whole immunoglobulins or immunoglobulin libraries on the surface of eukaryote host cells, including yeast and filamentous fungi, are described. The methods are useful for screening libraries of recombinant immunoglobulins in eukaryote host cells to identify immunoglobulins that are specific for an antigen of interest.
摘要:
Lower eukaryotic host cells have been recombinantly engineered to produce glycoprotein having human-like O-glycosylation. The glycoproteins are useful for the production of glycoprotein compositions with advantages for the production of human therapeutics.
摘要:
The present invention relates to the elimination of mannosylphosphorylation on the glycans of glycoproteins in the yeast genus Pichia. The elimination of mannosylphosphorylated glycoproteins results from the disruption of the PNO1 gene and the newly isolated P. pastoris MNN4B gene. The present invention further relates to methods for producing modified glycan structures in host cells that are free of glycan mannosylphosphorylation.
摘要:
Lower eukaryotic cells such as Pichia pastoris that normally cannot use galactose as a carbon source but which have been genetically engineered according to the methods herein to use galactose as a sole source of carbon are described. The cells are genetically engineered to express several of the enzymes comprising the Leloir pathway. In particular, the cells are genetically engineered to express a galactokinase, a UDP-galactose-C4-epimerase, and a galactose-1-phosphate uridyltransferase, and optionally a galactose permease. In addition, a method is provided for improving the yield of glycoproteins that have galactose-terminated or -containing N-glycans in cells that have been genetically engineered to produce glycoproteins with N-glycans having galactose residues but which normally lack the enzymes comprising the Leloir pathway comprising transforming the cells with one or more nucleic acid molecules encoding a galactokinase, a UDP-galactose-C4-epimerase, and a galactose-1-phosphate uridyltransferase. The methods and host cells described enable the presence or lack of the ability to assimilate galactose as a selection method for making recombinant cells. The methods and host cells are shown herein to be particularly useful for making immunoglobulins and the like that have galactose-terminated or containing N-glycans.
摘要:
A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of an inhibitor of Pmt-mediated O-linked glycosylation and/or in the presence of one or more α-1,2-mannosidases.
摘要:
A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of an inhibitor of Pmt-mediated O-linked glycosylation and/or in the presence of one or more α-1,2-mannosidases.
摘要:
Compositions comprising granulocyte-colony stimulating factor (GCSF) produced in a strain of Pichia pastoris glycoengineered to produce a GCSF wherein greater than 18% of the molecules comprise an 0-glycan with one mannose per (0-glycan is described. In particular aspects, the GCSF is PEGylated at the JV-terminus.
摘要:
A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of an inhibitor of Pmt-mediated O-linked glycosylation and/or in the presence of one or more α-1,2-mannosidases.
摘要:
A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of an inhibitor of Pmt-mediated O-linked glycosylation and/or in the presence of one or more α-1,2-mannosidases.
摘要:
The present invention provides methods to reduce or eliminate α-mannosidase resistant glycans on glycoproteins in yeast. The reduction or elimination of α-mannosidase resistant glycans on glycoproteins results from the disruption of the newly isolated P. pastoris AMR2 gene encoding β1,2-mannosyltransferase. The present invention also discloses novel genes, polypeptides, antibodies, vectors and host cells relating to α-mannosidase resistance on glycans.