摘要:
A near IR spectrometer-based analyzer attaches continuously or semi-continuously to a human subject and collects spectral measurements for determining a biological parameter in the sampled tissue, such as glucose concentration. The analyzer includes an optical system optimized to target the cutaneous layer of the sampled tissue so that interference from the adipose layer is minimized. The optical system includes at least one optical probe. Spacing between optical paths and detection fibers of each probe and between probes is optimized to minimize sampling of the adipose subcutaneous layer and to maximize collection of light backscattered from the cutaneous layer. Penetration depth is optimized by limiting range of distances between paths and detection fibers. Minimizing sampling of the adipose layer greatly reduces interference contributed by the fat band in the sample spectrum, increasing signal-to-noise ratio. Providing multiple probes also minimizes interference in the sample spectrum due to placement errors.
摘要:
The invention involves the monitoring of a biological parameter through a compact analyzer. The preferred apparatus is a spectrometer based system that is attached continuously or semi-continuously to a human subject and collects spectral measurements that are used to determine a biological parameter in the sampled tissue. The preferred target analyze is glucose. The preferred analyzer is a near-IR based glucose analyzer for determining the glucose concentration in the body.
摘要:
The invention involves the monitoring of a biological parameter through a compact analyzer. The preferred apparatus is a spectrometer based system that is attached continuously or semi-continuously to a human subject and collects spectral measurements that are used to determine a biological parameter in the sampled tissue. The preferred target analyte is glucose. The preferred analyzer is a near-IR based glucose analyzer for determining the glucose concentration in the body.
摘要:
A method and apparatus for calibrating noninvasive or implantable glucose analyzers uses either alternative invasive glucose determinations or noninvasive glucose determinations for calibrating noninvasive or implantable glucose analyzers. Use of an alternative invasive or noninvasive glucose determination in the calibration allows minimization of errors due to sampling methodology, and spatial and temporal variations that are built into the calibration model. An additional embodiment uses statistical correlations between noninvasive and alternative invasive glucose determinations and traditional invasive glucose determinations to adjust noninvasive or alternative invasive glucose concentrations to traditional invasive glucose concentrations. The invention provides a means for calibrating on the basis of glucose determinations that reflect the matrix observed and the variable measured by the analyzer more closely. A glucose analyzer couples an invasive fingerstick meter to a noninvasive glucose analyzer for calibration, validation, adaptation, and safety check of the calibration model embodied in the noninvasive analyzer.
摘要:
The invention provides for transformation of a section of a data block independently of the transformation of separate or overlapping data blocks to determine a property related to the original matrix, where each of the separate or overlapping data blocks are derived from an original data matrix. The transformation enhances parameters of a first data block over a given region of an axis of the data matrix, such as signal-to-noise, without affecting analysis of a second data block derived from the data matrix. This allows for enhancement of analysis of an analyte property, such as concentration, represented within the original data matrix. In a first embodiment of the invention, a separate decomposition and factor selection for each selected data matrix is performed with subsequent score matrix concatenization. The combined score matrix is used to generate a model that is subsequently used to estimate a property, such as concentration represented in the original data matrix. In a second embodiment, each data matrix is independently preprocessed. Demonstration of the invention is performed through glucose concentration estimation from noninvasive spectra of the body.
摘要:
A near-infrared spectrometer-based analyzer attaches continuously or semi-continuously to a human subject and is used to collect spectral measurements of a tissue sample. The spectral readings are used to estimate a biological parameter in the sampled tissue noninvasively, such as glucose concentration. The preferred apparatus is a near-infrared analyzer that includes a base module and a sample module connected together with a communication bundle. The base module contains the bulk of the analyzer, such as a spectrograph and a central processing unit with an algorithm used for converting the optical signal into a glucose concentration. The sample module is typically in a smaller module that interfaces to a tissue sample. The sample module is preferably handheld and provides minimal sampling distortion due to heat or pressure.
摘要:
A noninvasive analyzer apparatus and method of use thereof is described for spatially separating light having noninvasively probed a tissue volume into groups, which narrows standard deviations of probed tissue pathlength for each of the groups. Reduction in tissue pathlength uncertainty subsequently enhances noninvasive analyte concentration determination accuracy. Control of individual detector distance from an illumination zone in combination with control of area of a detection zone coupled to an individual detector yields intensity control of the various groups. The intensity control is optionally aided using several intensity control elements including: control of detector response shape, hardware gain settings set as function of distance from the illumination zone, varying numerical aperture of light collection optics as a function of position from the illumination zone, multiple illumination-detector linked bundlets, micro-optics, segmented spacers, arcs of detector elements, and/or outlier analysis based on detected intensity as a function of position.
摘要:
A noninvasive analyzer apparatus and method of use thereof is described for spatially separating light for use in noninvasively determining an analyte concentration of a subject through use of detectors linked to multiple controlled sample illumination zone to sample detection zone distances. The controlled radial separation of illumination and detection zones yields reduced deviation in total observed optical pathlength and/or control of pathlengths in a desired tissue volume for each element of a set of detector elements. Performance using the discrete detection zones is enhanced using a combination of segmented spacers, arcs of detector elements, use of micro-optics, use of optical filters associated with individual detector elements, control of detector response shapes, and/or outlier analysis achievable through use of multiple separate and related observed signals of a detector array.
摘要:
A method and apparatus for noninvasive glucose measurement measures glucose indirectly from the natural response of tissue to variations in analyte concentration. The indirect measurement method utilizes factors affected by or correlated with the concentration of glucose, such as refractive index, electrolyte distribution or tissue scattering. Measurement reliability is greatly improved by stabilizing optical properties of the tissue at the measurement site, thus blood perfusion rates at the sample site are regulated. Perfusion is monitored and stabilized by spectroscopically measuring a control parameter, such as skin temperature, that directly affects perfusion. The control parameter is maintained in a range about a set point, thus stabilizing perfusion. Skin temperature is controlled using a variety of means, including the use of active heating and cooling elements, passive devices, such as thermal wraps, and through the use of a heated coupling medium having favorable heat transfer properties.
摘要:
An optical sampling interface system minimizes and compensates error resulting from sampling variations and measurement site state fluctuations. Components include: An optical probe placement guide having an aperture wherein the optical probe is received, facilitates repeatable placement accuracy on surface of a tissue measurement site with minimal, repeatable disturbance to surface tissue. The aperture creates a tissue meniscus that minimizes interference due to surface irregularities and controls variation in tissue volume sampled; an occlusive element placed over the tissue meniscus isolates the meniscus from environmental fluctuations, stabilizing hydration at the site and thus, surface tension; an optical coupling medium eliminates air gaps between skin surface and optical probe; a bias correction element applies a bias correction to spectral measurements, and associated analyte measurements. When the guide is replaced, a new bias correction is determined for measurements done with the new placement. Separate components of system can be individually deployed.