Abstract:
A semiconductor chip device package comprised of a semiconductor substrate having semiconductor devices formed on the semiconductor substrate. At least one dielectric layer is over the semiconductor substrate. At least one layer of interconnects is over the semiconductor devices and within the at least one respective dielectric layer with at least a portion of the interconnects being separated by voids having a vacuum or air therein. A passivation layer is over the uppermost of the at least one layer of interconnects. Wherein the semiconductor chip device is vacuum sealed within a semiconductor chip device package.
Abstract:
A method for forming an electrostatic discharge device using silicon-on-insulator technology is described. An N-well is formed within a silicon semiconductor substrate. A P+ region is implanted within a portion of the N-well and an N+ region is implanted within a portion of the semiconductor substrate not occupied by the N-well. An oxide layer is formed overlying the semiconductor substrate and patterned to form openings to the semiconductor substrate. An epitaxial silicon layer is grown within the openings and overlying the oxide layer. Shallow trench isolation regions are formed within the epitaxial silicon layer extending to the underlying oxide layer. Gate electrodes and associated source and drain regions are formed in and on the epitaxial silicon layer between the shallow trench isolation regions. An interlevel dielectric layer is deposited overlying the gate electrodes. First contacts are opened through the interlevel dielectric layer to the underlying source and drain regions. The interlevel dielectric layer is covered with a mask that covers the first contact openings. Second contact openings are opened through the interlevel dielectric layer, shallow trench isolations, and the oxide layer to the N+ region and P+ region. The mask is removed. The first and second contact openings are filled with a conducting layer to complete formation of an ESD device.
Abstract:
A method for forming an electrostatic discharge device using silicon-on-insulator technology is described. A silicon-on-insulator substrate is provided comprising a semiconductor substrate underlying an oxide layer underlying a silicon layer. The silicon layer and oxide layer are patterned to form a gate electrode wherein the semiconductor substrate is exposed. Ions are implanted into the exposed semiconductor substrate to form source and drain regions adjacent to the gate electrode. Spacers are formed on sidewalls of the gate electrode. An interlevel dielectric layer is deposited overlying the gate electrode. Openings are formed through the interlevel dielectric layer to the source and drain regions and filled with a conducting layer. The conducting layer is patterned to form conducting lines to complete formation of an electrostatic discharge device using SOI technology in the fabrication of integrated circuits.
Abstract:
A method of patterning a hard mask, the comprising the following steps. A semiconductor structure is provided. A conductor film is formed over the semiconductor structure. An oxide layer is formed over the conductor film. A patterned metal oxide layer is formed over the conductor film. The oxide layer and the conductor film are etched, using the metal oxide layer as a hard mask, to form a patterned structure.
Abstract:
A method of fabricating an SOI transistor device comprises the following steps. a silicon semiconductor structure is provided. A silicon oxide layer is formed over the silicon semiconductor structure. A silicon-on-insulator layer is formed over the oxide layer. A well is implanted in the silicon-on-insulator layer. A gate oxide layer is grown over the silicon-on-insulator layer. A polysilicon layer is deposited over the gate oxide layer. The polysilicon layer, gate oxide layer, and silicon oxide layer are patterned and etched to form trenches. The trenches are filled with an isolation material to at least a level even with a top surface of the polysilicon layer to form raised shallow trench isolation regions (STIs). The polysilicon layer is patterned and the non-gate portions are removed polysilicon adjacent the raised STIs forming a gate conductor between the raised STIs with the gate conductor and said raised STIs having exposed sidewalls. The gate oxide layer is removed between the gate conductor and the raised STIs, and outboard of the raised STIs. The source and drain are formed in the silicon-on-insulator layer adjacent the gate spacers. Silicide regions may then be formed on the source and drain.
Abstract:
A new method of fabricating a sub-quarter micron MOSFET device is achieved. A semiconductor substrate is provided. Isolation regions are formed in this substrate. An oxide layer is provided overlying both the substrate and the isolation regions. The oxide layer is patterned and etched exposing two regions of the substrate. A selective epitaxial growth (SEG) is performed with in situ doping covering the two exposed substrate regions formed during the previous step. The doped SEG regions will form the source and drain contact regions of the MOSFET. The oxide layer region between the two doped SEG regions is then patterned and etched away exposing the substrate. This is followed by a gate oxide formation and either a polysilicon or metal gate deposition. Planarization is then performed on the surface to facilitate interconnection later in the process and to form the final gate structure. Thermal energy provided from processing steps or from a rapid thermal anneal (RTA) allows the doping atoms in the SEG regions to diffuse into the substrate thereby forming the active source/drain regions. This method allows precise control of the doping profile in the active source/drain region. An interlevel dielectric is then deposited over the entire surface. Contact holes are then etched in the interlevel dielectric and metalization patterned to allow interconnection to the completed MOSFET device.
Abstract:
A method for fabricating a metal-oxide-metal capacitor is described. A first insulating layer is provided overlying a semiconductor substrate. A barrier metal layer and a first metal layer are deposited over the insulating layer. A titanium layer is deposited overlying the first metal layer. The titanium layer is exposed to an oxidizing plasma while simultaneously a portion of the titanium layer where the metal-oxide-metal capacitor is to be formed is exposed to light whereby the portion of the titanium layer exposed to light reacts with the oxidizing plasma to form titanium oxide. Thereafter, the titanium layer is removed, leaving the titanium oxide layer where the metal-oxide-metal capacitor is to be formed. A second metal layer is deposited overlying the first metal layer and the titanium oxide layer. The second metal layer, titanium oxide layer, and first metal layer are patterned to form a metal-oxide-metal capacitor wherein the second metal layer forms an upper plate electrode, the titanium oxide layer forms a capacitor dielectric, and the first metal layer forms a bottom plate electrode of the MOM capacitor.
Abstract:
A new method is provided for the creation of an ESD protection device for deep submicron semiconductor technology. An STI trench is created and filled with oxide. The surface of the STI region is polished after which a gate structure is created over the STI region. A high energy ESD implant is performed that is self-aligned with the created gate structure after which the EDS device structure is completed by implanting the source and drain regions of the ESD device.
Abstract:
A method of fabricating a MOS device having raised source/drain, raised isolation regions having isolation spacers, and a gate conductor having gate spacers is achieved. A layer of gate silicon oxide is grown over the surface of a semiconductor structure. A polysilicon layer is deposited overlying the gate silicon oxide layer. The polysilicon layer, gate silicon oxide layer and semiconductor structure are patterned and etched to form trenches. The trenches are filled with an isolation material to at least a level even with a top surface of the polysilicon layer to form raised isolation regions. The remaining polysilicon layer is patterned to remove polysilicon adjacent the raised isolation regions forming a gate conductor between the raised isolation regions. The gate conductor and the raised isolation regions having exposed sidewalls. The gate oxide layer between the gate conductor and raised isolation regions is removed. Isolation spacers are formed on the exposed sidewalls of the raised isolation regions and gate spacers are formed on the exposed sidewalls of the gate conductor. A layer of silicon is deposited and patterned to form raised source and drain adjacent the gate spacers with source and drain being doped to form a MOS device.
Abstract:
A method of forming a graded trench for a shallow trench isolation region is provided. The method includes providing a semiconductor substrate with a substrate region. The method further includes forming a pad oxide layer overlying the substrate region. Additionally, the method includes forming an etch stop layer overlying the pad oxide layer. The method further includes patterning the etch stop layer and the pad oxide layer to expose a portion of the substrate region. In addition, the method includes forming a trench within an exposed portion of the substrate region, the trench having sidewalls and a bottom and a first depth. The method additionally includes forming a dielectric layer overlying the trench sidewalls, the trench bottom, and mesa regions adjacent to the trench. The method further includes removing a first portion of the dielectric layer from the trench bottom to expose the substrate region with a second portion of the dielectric layer remaining on the sidewalls of the trench. In addition, the method includes etching the substrate region to increase the depth of at least a portion of the trench to a second depth. Also, the method includes removing the second portion of the dielectric layer from the trench.