Abstract:
A method of performing an STI gapfill process for semiconductor devices is provided. In a specific embodiment of the invention, the method includes forming an stop layer overlying a substrate. In addition, the method includes forming a trench within the substrate, with the trench having sidewalls, a bottom, and a depth. The method additionally includes forming a liner within the trench, the liner lining the sidewalls and bottom of the trench. Furthermore, the method includes filling the trench to a first depth with a first oxide. The first oxide is filled using a spin-on process. The method also includes performing a first densification process on the first oxide within the trench. In addition, the method includes depositing a second oxide within the trench using an HDP process to fill at least the entirety of the trench. The method also includes performing a second densification process on the first and second oxides within the trench.
Abstract:
A new method and structure is provided for the creation of interconnect lines. The cross section of the interconnect lines of the invention, taken in a plane that is perpendicular to the longitudinal direction of the interconnect lines, is a triangle as opposed to the conventional square or rectangular cross section of interconnect lines.
Abstract:
An integrated microelectronics semiconductor circuit fabricated on a silicon-on-insulator (SOI) type substrate can be protected from unwanted current surges and excessive heat buildup during fabrication by means of a heat-dissipating, protective plasma-induced-damage (PID) diode. The present invention fabricates such a protective diode as a part of the overall scheme in which the transistor devices are formed.
Abstract:
A semiconductor device and manufacturing process therefor is provided in which angled dopant implantation is followed by the formation of vertical trenches in the silicon on insulator substrate adjacent to the sides of the semiconductor gate. A second dopant implantation in the exposed the source/drain junctions is followed by a rapid thermal anneal that forms the semiconductor channel in the substrate. Contacts having inwardly curved cross-sectional widths in the semiconductor substrate are then formed which connect vertically to the exposed source/drain junctions either directly or through salicided contact areas.
Abstract:
A triple layered low dielectric constant material dual damascene metallization process is described. Metal lines are provided covered by an insulating layer overlying a semiconductor substrate. A first dielectric layer of a first type is deposited overlying the insulating layer. A second dielectric layer of a second type is deposited overlying the first dielectric layer. A via pattern is etched into the second dielectric layer. Thereafter, a third dielectric layer of the first type is deposited overlying the patterned second dielectric layer. Simultaneously, a trench pattern is etched into the third dielectric layer and the via pattern is etched into the first dielectric layer to complete the formation of dual damascene openings in the fabrication of an integrated circuit device. If the first type is a low dielectric constant organic material, the second type will be a low dielectric constant inorganic material. If the first type is a low dielectric constant inorganic material, the second type will be a low dielectric constant organic material.
Abstract:
A method for manufacturing a semiconductor device is provided. In a specific embodiment, the method includes providing a semiconductor substrate with a surface region. The surface region includes one or more layers overlying the semiconductor substrate. Additionally, the method includes forming a dielectric layer overlying the surface region and forming a diffusion barrier layer overlying the dielectric layer. Moreover, the method includes subjecting the diffusion barrier layer to a plasma environment to facilitate adhesion between the diffusion barrier layer and the dielectric layer at an interface region. Also, the method includes processing the semiconductor substrate while maintaining attachment between the dielectric layer and the diffusion barrier layer at the interface region. The subjecting the diffusion barrier layer to a plasma environment includes maintaining a thickness of the barrier diffusion layer.
Abstract:
A method of performing an STI gapfill process for semiconductor devices is provided. In a specific embodiment of the invention, the method includes forming an stop layer overlying a substrate. In addition, the method includes forming a trench within the substrate, with the trench having sidewalls, a bottom, and a depth. The method additionally includes forming a liner within the trench, the liner lining the sidewalls and bottom of the trench. Furthermore, the method includes filling the trench to a first depth with a first oxide. The first oxide is filled using a spin-on process. The method also includes performing a first densification process on the first oxide within the trench. In addition, the method includes depositing a second oxide within the trench using an HDP process to fill at least the entirety of the trench. The method also includes performing a second densification process on the first and second oxides within the trench.
Abstract:
A method for forming a semiconductor device is provided. In one embodiment, the method includes providing a semiconductor substrate with a surface region. The surface region includes one or more layers overlying the semiconductor substrate. In addition, the method includes depositing a dielectric layer overlying the surface region. The dielectric layer is formed by a CVD process. Furthermore, the method includes forming a diffusion barrier layer overlying the dielectric layer. In addition, the method includes forming a conductive layer overlying the diffusion barrier layer. Additionally, the method includes reducing the thickness of the conductive layer using a chemical-mechanical polishing process. The CVD process utilizes fluorine as a reactant to form the dielectric layer. In addition, the dielectric layer is associated with a dielectric constant equal or less than 3.3.
Abstract:
A method of forming a semiconductor structure is provided. The method includes providing a semiconductor substrate with a substrate region. The method also includes forming a pad oxide layer overlying the substrate region. The method additionally includes forming a stop layer overlying the pad oxide layer. Furthermore, the method includes patterning the stop layer and the pad oxide layer to expose a portion of the substrate region. In addition, the method includes forming a trench within an exposed portion of the substrate region, the trench having sidewalls and a bottom and a height. Also, the method includes depositing alternating layers of oxide and silicon nitride to at least fill the trench, the oxide being deposited by an HDP-CVD process. The method additionally includes performing a planarization process to remove a portion of the silicon nitride and oxide layers. In addition, the method includes removing the pad oxide and stop layers.
Abstract:
In the present invention, a semiconductor device is formed which includes an MIM capacitor located on the upper surface of a heterostructure from which the emitter, base and collector sections of a nearby HBT are defined. In this way the capacitor and HBT share a substantially common structure, with the base and emitter electrodes of the HBT fashioned from the same metal layers as the upper and lower capacitor plates, respectively. Furthermore, as the insulator region of the capacitor is formed prior to definition of the HBT structure, the dielectric material used can be deposited by means of a plasma enhanced process, without damaging the HBT structure.