Abstract:
A method of forming an engine component according to an exemplary aspect of the present disclosure includes, among other things, introducing molten metal into a cavity between a shell and a casting article in the shell. The casting article includes a ceramic portion and a plurality of fibers. The method further includes separately removing the ceramic portion and the fibers from an interior of the component.
Abstract:
A method of forming an engine component according to an exemplary aspect of the present disclosure includes, among other things, introducing molten metal into a cavity between a shell and a casting article in the shell. The casting article includes a ceramic portion and a plurality of fibers. The method further includes separately removing the ceramic portion and the fibers from an interior of the component.
Abstract:
An investment casting apparatus includes a furnace having an opening, a mold support, and a multi-axis actuator connected with the mold support and configured to retract the mold support from the opening with multiple-axis motion. An investment casting method includes withdrawing, with multiple-axis motion, a mold through the opening of the furnace to solidify a molten metal- or metalloid-based material in the mold. The apparatus and method can be used to form a cast article that has a body formed of the metal- or metalloid-based material. The body has a multi-textured, single crystal microstructure.
Abstract:
A method of fabricating an investment casting mold includes using a zircon-containing slurry to form a facecoat of a refractory investment wall of a mold cavity in an investment casting mold. The zircon-containing slurry includes, by weight, at least 70% of zircon powder. Also disclosed is a slurry for use in an investment casting mold. The slurry includes, by weight, at least 70% of zircon powder, 10%-30% of colloidal silica material, and 1%-10% of a carrier solvent. The method and slurry can be used to fabricate an investment casting mold that has a refractory investment wall with a facecoat having, by weight, at least 70% zircon.
Abstract:
A high-temperature die casting die includes a first die plate with a first recess and a second die plate with a second recess, the first and second recesses defining a main part cavity and gating. A grain selector is in fluid communication with the main cavity, and an in situ zone refining apparatus is adapted to apply a localized thermal gradient to at least one of the first and second die plates. The localized thermal gradient and the at least one die plate are movable relative to each other so as to apply the localized thermal gradient along a first direction extending from the grain selector longitudinally across the main part cavity.
Abstract:
A method of method of making an airfoil includes making a refractory metal core that defines an interior of the airfoil by a tomo-lithographic process, making a mold that defines an exterior of the airfoil, inserting the refractory metal core into the mold, and pouring an airfoil material between the refractory metal core and the mold to cast the airfoil.
Abstract:
A die casting system includes a die including at least one die component that defines a die cavity, a spar received within a portion of said die cavity, a shot tube in fluid communication with the die cavity, and a shot tube plunger moveable within the shot tube to communicate a molten metal into the die cavity to cast a hybrid component. The spar establishes an internal structure of the hybrid component, and one of the internal structures and an outer structure of said hybrid component is an equiaxed structure.
Abstract:
A method of making a refractory metal core includes forming two layers of the core out of a material. The layers are bonded together to form a laminate master pattern, and a flexible mold is formed around the pattern. The pattern is removed from the flexible mold, and pulverulent refractory metal material is poured into the flexible mold. The pulverulent refractory metal material is sintered to form the refractory metal core.
Abstract:
An induction furnace assembly comprising a chamber having a mold; a primary inductive coil coupled to the chamber; a susceptor surrounding the chamber between the primary inductive coil and the mold; and a shield material contained in a reservoir coupled to or proximate the mold between the susceptor and the mold; the shield material configured to attenuate a portion of an electromagnetic flux generated by the primary induction coil that is not attenuated by the susceptor.
Abstract:
An induction furnace assembly comprising a chamber having a mold; a primary inductive coil coupled to the chamber; a layered susceptor comprising at least two layers of magnetic field attenuating material surrounding the chamber between the primary inductive coil and the mold to nullify the electromagnetic field in the hot zone of the furnace chamber.