摘要:
A field emission lamp (2) includes a housing (20), a first electrode (22), and a second electrode (24). The housing (20) includes a first supporting element (201) and a second supporting element (202). The first supporting element (201) is disposed at one end of the housing (20). The second supporting element (202) is disposed at opposite end of the housing (20). The first electrode (22) includes an electron emitter (222) and a first electric conduction element (224) electrically connected with the electron emitter (222). The first electric conduction element (224) is fastened to the first supporting element (201). The second electrode (24) includes an electric conduction membrane (241), a fluorescent layer (242) and a second electric conduction element (243). The fluorescent layer (242) is disposed on the electric conduction membrane (241) and corresponding to the electron emitter (222). The second electric conduction element (243) is electrically connected with the electric conduction membrane (241) and is fastened to the second supporting element (202).
摘要:
A method for manufacturing a field emission electron source includes: (a) Providing a carbon nanotube (CNT) film, the CNT film has a plurality of CNTs, the CNTs are aligned along a same direction; a first electrode and a second electrode. (b) Fixing the two opposite sides of the CNT film on the first electrode and the second electrode, the CNTs in the CNT film extending from the first electrode to the second electrode. (c) Treating the CNT film with an organic solvent to form at least one CNT string. (d) Applying a voltage between two opposite ends of the CNT string until the CNT string snaps, thereby at least one CNT needle, the CNT needle has an end portion and a broken end portion. (e) Securing the CNT needle to a conductive base by attaching the end portion of the CNT needle to the conductive base.
摘要:
A double-faced field emission display device includes two parallel fluorescent screens (10, 10′) and an electron emission structure (20) located between the fluorescent screens. Each fluorescent screen includes a transparent substrate (21, 21′) with an anode plate (12, 12′) and coplanar fluorescent layers (13, 13′) formed at an inner surface of the transparent substrate. The electron emission structure includes an opaque insulative substrate (28) with cathode plates (26, 26′), electron emitters (27, 27′) and grid plates (25, 25′) formed at each of opposite surfaces (281, 282) thereof. Symmetrically opposite pairs of same electrodes are electrically interconnected so that the fluorescent screens can simultaneous display a same image. Only a single driving system is needed to achieve the simultaneous display.
摘要:
A field emission lamp includes: a transparent bulb (10) having a neck portion; a lamp head mated with the neck portion; an anode layer (20) formed on an inner surface of the bulb; a fluorescence layer (30) formed on the anode layer; a cathode electrode (43) and an anode electrode (23) located at the lamp head; an anode down-lead ring (24) located at the neck portion, the anode down-lead ring engaging with the anode layer and electrically connecting with the anode electrode via an anode down-lead pole (21) and a pair of down-leads (22); and an electron emitting cathode positioned in the bulb and engaging with the cathode electrode. The field emission lamp is safe for humans and environmentally friendly, provides a high electrical energy utilization ratio, and has a reduced cost.
摘要:
A method for forming a patterned array of carbon nanotubes (11) includes the steps of: forming an array of carbon nanotubes on a substrate (10); imprinting the array of carbon nanotubes using a molding device (12) with a predetermined pattern; and removing the molding device, thereby leaving a patterned array of carbon nanotubes (13). The method can effectively reduce or even eliminate any shielding effect between adjacent carbon nanotubes, and is simple to implement. The field emission performance of the patterned array of carbon nanotubes is improved.
摘要:
A field emission electron source includes at least one electron emission member. Each electron emission member includes a conductive body and an electron emission layer formed on the conductive body. The conductive body has an upper portion. The electron emission layer is formed on, at least, the upper portion of the conductive body. The electron emission layer includes a glass matrix; and at least one carbon nanotube, and a plurality of metallic conductive particles and getter powders dispersed in the glass matrix. A method for making such field emission electron source is also provided.
摘要:
A field emission device (10), in accordance with a preferred embodiment, includes an anode electrode (22), a cathode electrode (12), a gate electrode (16), a phosphor layer (23), and a number of electron emitters (13) formed on the cathode electrode. The anode electrode is opposite to and spaced from the cathode electrode. The phosphor layer is attached/formed on the anode electrode. The gate electrode (preferably in the form of a wire) is spatially positioned between the anode electrode and the cathode electrode. In addition, the gate electrode is correspondingly arranged relative to the phosphor layer. The electron emitters are distributed on surfaces of the cathode electrode at least adjacent to two sides of the gate electrode, thus promoting the ability of the emitted electrons to be guided by, yet not readily impinge on, the gate electrode on a path toward the phosphor layer.
摘要:
A preferred method for making a field emission device (100) includes the steps of: providing an insulative substrate (101) with a surface (1011); defining a plurality of recesses (1012) in a desired pattern in the substrate; forming a cathode layer (104) in the recesses; forming a plurality of electron emitters (106) on the cathode; and forming a grid (111) on the surface of the substrate, such that the grid is insulated from the cathode.
摘要:
A method for manufacturing a field emission display, including: providing a cathode module having a plurality of cathode electrodes (32) and a plurality of electron emitters (33) arranged on the cathode electrodes; making a double-gated structure having an insulating plate (10) and a first gate electrode (14) and a second gate electrode (16) attached thereto, wherein a plurality of through holes (22) are defining through the insulating plate, the first gate electrode and the second gate electrode; providing an anode module having an anode electrode (35) and a phosphor layer (37) attached on the anode electrode; and assembling the cathode module, the double-gated structure and the anode module so as to form the field emission display.
摘要:
A preferred method for making a carbon nanotube-based field emission cathode device in accordance with the invention includes the following steps: preparing a solution having a solvent and a predetermined quantity of carbon nanotubes dispersed therein; providing a base with an electrode (101) formed thereon; forming a layer of conductive grease (102) on the base; distributing the solution on the layer of conductive grease to form a carbon nanotube layer (103) on the conductive grease; and scoring the layer of conductive grease, for separating first ends of at least some of the carbon nanotubes from the conductive grease for attaining effective carbon nanotube field emission cathode.