Abstract:
An optical backplane is provided that has at least first and second side walls that are generally parallel to one another and at least one optical relay element disposed on at least one of the parallel side walls. An optical signal is coupled into the optical backplane through an entrance facet of the backplane. The optical signal is maintained within the optical backplane by internal reflection at the parallel side walls of the backplane. The optical relay element receives the optical signal reflected off of one of the side walls and reflects and refocuses the optical signal to guide the optical signal and prevent it from diverging as it propagates through the backplane from the entrance facet to the exit facet.
Abstract:
A process for producing a fermentation product from a lignocellulose-containing material includes pre-treating the lignocellulose-containing material; introducing chitosan or a chitosan-like polymer to the pre-treated lignocellulose-containing material; exposing the pre-treated lignocellulose-containing material to an effective amount of a hydrolyzing enzyme; and fermenting with a fermenting organism to produce a fermentation product.
Abstract:
A clustering and recommendation machine determines that an item is included in a cluster of items. The machine accesses item data descriptive of the item. The machine accesses a vector that represents the cluster and calculates the likelihood that the item is included in the cluster, based on the item variable and the probability parameter. The machine determines that the item is included in the cluster, based on the likelihood. The machine also recommends an item to a potential buyer. The machine accesses behavior data that represents a first event type pertinent to a first cluster of items. The machine calculates a probability that a second event type pertaining to a second cluster of items will co-occur with the first event type. The machine identifies an item from the second cluster to be recommended and presents a recommendation of the item to the potential buyer.
Abstract:
A wafer processing method for dividing a wafer into individual devices along a plurality of crossing streets formed on the front side of the wafer, the individual devices being respectively formed in a plurality of regions partitioned by the streets. The wafer processing method includes the steps of attaching the front side of the wafer to a dicing tape supported to an annular dicing frame, grinding the back side of the wafer to reduce the thickness of the wafer to a predetermined thickness, forming a break start point along each street from the back side of the wafer, applying an external force to the wafer to break the wafer along each street where the break start point is formed, thereby dividing the wafer into the individual devices, attaching the back side of the wafer to a front side of an adhesive tape supported to an annular frame and next removing the adhesive tape from the front side of the adhesive tape, and peeling off and picking up each device from the adhesive tape.
Abstract:
An optics system is provided that is made up of a single diffractive optical element that performs beam collimating, beam splitting, and light blocking functions. The diffractive optical element is made up of a substrate having a first surface comprising an entrance facet and a second surface comprising an exit facet. The first surface comprising the entrance facet performs at least the functions of collimating the beam of light produced by the light source and of tilting the collimated beam in a particular direction. The second surface comprising the exit facet performs at least the functions of splitting the tilted collimated beam into at least two collimated light beams and of blocking unintended light (i.e., one or more mode order groups that are not intended to be used for imaging purposes). By performing all of these functions on different surfaces of a single substrate, an extremely compact optics system having very high optical efficiency and a very high signal-to-noise ratio is realized.
Abstract:
A clustering and recommendation machine determines that an item is included in a cluster of items. The machine accesses item data descriptive of the item. The machine accesses a vector that represents the cluster and calculates the likelihood that the item is included in the cluster, based on the item variable and the probability parameter. The machine determines that the item is included in the cluster, based on the likelihood. The machine also recommends an item to a potential buyer. The machine accesses behavior data that represents a first event type pertinent to a first cluster of items. The machine calculates a probability that a second event type pertaining to a second cluster of items will co-occur with the first event type. The machine identifies an item from the second cluster to be recommended and presents a recommendation of the item to the potential buyer.
Abstract:
The present invention provides a method for managing transmissions in a wireless communication network (100). The method at a first node (102) of a plurality of nodes of the wireless communication network includes transmitting (304) a data frame to a second node (104) using a first transmit power level. The method further includes determining (306) whether an acknowledgement for the transmitted data frame is received from the second node. Further, the method includes determining (308) a cause of unsuccessful transmission when the acknowledgement is not received from the second node. Moreover, the method includes re-transmitting (310) the data frame to the second node using a second transmit power level when the cause of unsuccessful transmission is determined as a collision. Furthermore, the method includes setting (312) a transmit power level of the first node to a third transmit power level.
Abstract:
An optical transmitter relaxes the tolerance between a source assembly and a fiber receptacle to facilitate passive alignment. The source assembly includes a light source and a lens. The lens is held at a fixed distance away from the light source using precise support structures typically formed by photolithographic processes. The fiber receptacle includes an optical element. The fiber receptacle is adapted to hold an optical fiber at a fixed distance from the optical element. The lens substantially collimates light from the light source into the form of collimated light. The optical element focuses the collimated light onto the aperture of the optical fiber.
Abstract:
A method for selection of the association access point for a station in an infrastructure mesh network based on received signal strength and one or more “association bias” weights received from neighboring access points. Each weight corresponds to a packet length category. In one embodiment, stations measure received signal strength for received signals and decode the association bias information field(s) and corresponding packet length category thresholds that are received in management frames such as beacons. Stations use this information to select an access point for association that will minimize the overall mesh resource utilization for the traffic (i.e. packet lengths) being transmitted. The method includes three elements: network assistance, access point actions, and station actions.
Abstract:
Methods and apparatus, including computer program products, implementing and using techniques for providing a web service agent application. The web service agent application has a communication module and a processing module. The communication module receives requests from one or more web service applications or one or more adaptive agent applications; and transmits responses to one or more web service applications or one or more adaptive agent applications. The processing module receives a request for information from the communication module; identifies a resource that can fulfill the request for information; obtains a response to the request from the identified resource; and delivers the response to the request to the communication module.