摘要:
The present invention provides a method for manufacturing a TMR sensor that reduces damage to a sensor stack during intermediate stages of the manufacturing process. In an embodiment of the invention, after formation of a sensor stack, a protective layer is deposited on the sensor stack that provides protection from materials that may be used in subsequent steps of the manufacturing process. The protective layer is subsequently converted to an insulating layer and the thickness of the insulating layer is extended to an appropriate thickness. In converting the protective layer to an insulating layer, the sensor stack is not directly exposed to materials that may damage it. For example, in an embodiment of the invention, Mg is used as the protective layer that is subsequently converted to MgO with the introduction of oxygen. Although direct contact of oxygen with the sensor stack may cause damage to the sensor stack, direct contact is avoided by the present invention. Subsequently, the thickness of the insulating layer, in this example can be extended to an appropriate thickness without exposing the sensor stack to damage causing oxygen and inter-diffusion.
摘要:
Embodiments herein generally relate to TMR readers and methods for their manufacture. The embodiments discussed herein disclose TMR readers that utilize a structure that avoids use of the DLC layer over the sensor structure and over the hard bias layer. The capping structure over the sensor structure functions as both a protective layer for the sensor structure and a CMP stop layer. The hard bias capping structure functions as both a protective structure for the hard bias layer and as a CMP stop layer. The capping structures that are free of DLC reduce the formation of notches in the second shield layer so that second shield layer is substantially flat.
摘要:
Methods for fabrication of leading edge shields and tapered magnetic poles with a tapered leading edge are provided. The leading edge shield may be formed by utilizing a CMP stop layer. The CMP stop layer may aid in preventing over polishing of the magnetic material. For the tapered magnetic poles with a tapered leading edge, a magnetic material is deposited on a planarized surface, a patterned resist material is formed, and exposed magnetic material is etched to form at least one tapered surface of the magnetic material.
摘要:
A method and system for providing a PMR transducer including an intermediate layer. The method and system include providing a hard mask layer on the intermediate layer. The hard mask layer is for a reactive ion etch of the intermediate layer. The method and system also include providing a bottom antireflective coating (BARC) layer on the hard mask layer. The BARC layer is also a masking layer for the hard mask layer. The method and system also include forming a trench in the intermediate layer using at least one reactive ion etch (RIE). The trench has a bottom and a top wider than the bottom. The method and system also include providing a PMR pole. At least a portion of the PMR pole resides in the trench.
摘要:
An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the α-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer of NiCr, NiFe, or NiFeCr layer on the oc-TaN layer. An α-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an α-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
摘要:
An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the α-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the α-TaN layer. An α-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an α-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
摘要:
An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the α-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the α-TaN layer. An α-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an α-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
摘要:
The method and system for providing a magnetoresistive device are disclosed. The magnetoresistive device is formed from a plurality of magnetoresistive layer. The method and system include providing a mask. The mask covers a first portion of the magnetoresistive element layers in at least one device area. The magnetoresistive element(s) are defined using the mask. The method and system include depositing hard bias layer(s). The method and system also include providing a hard bias capping structure on the hard bias layer(s). The hard bias capping structure includes a first protective layer and a planarization stop layer. The first protective layer resides between the planarization stop layer and the hard bias layer(s). The method and system also include performing a planarization. The planarization stop layer is configured for the planarization.
摘要:
Methods are presented for fabricating an MTJ element having a precisely controlled spacing between its free layer and a bit line and, in addition, having a protective spacer layer formed abutting the lateral sides of the MTJ element to eliminate leakage currents between MTJ layers and the bit line. Each method forms a dielectric spacer layer on the lateral sides of the MTJ element and, depending on the method, includes an additional layer that protects the spacer layer during etching processes used to form a Cu damascene bit line. At various stages in the process, a dielectric layer is also formed to act as a CMP stop layer so that the capping layer on the MTJ element is not thinned by the CMP process that planarizes the surrounding insulation. Subsequent to planarization, the stop layer is removed by an anisotropic etch of such precision that the MTJ element capping layer is not thinned and serves to maintain an exact spacing between the bit line and the MTJ free layer.
摘要:
MTJ stacks formed using prior art processes often fail because of shorts between the pinned layer and the top electrode. This problem has been overcome by depositing a protective layer on the MTJ sidewalls followed by an inter-layer dielectric. Then planarizing until the protective layer is just exposed. Finally, an etching (or second CMP) process is used to selectively remove the protective layer from the top surface of the cap layer.