摘要:
To provide a transistor having a favorable electric characteristics and high reliability and a display device including the transistor. The transistor is a bottom-gate transistor formed using an oxide semiconductor for a channel region. An oxide semiconductor layer subjected to dehydration or dehydrogenation through heat treatment is used as an active layer. The active layer includes a first region of a superficial portion microcrystallized and a second region of the rest portion. By using the oxide semiconductor layer having such a structure, a change to an n-type, which is attributed to entry of moisture to the superficial portion or elimination of oxygen from the superficial portion, and generation of a parasitic channel can be suppressed. In addition, contact resistance between the oxide semiconductor layer and source and drain electrodes can be reduced.
摘要:
A semiconductor device which includes a thin film transistor having an oxide semiconductor layer and excellent electrical characteristics is provided. Further, a method for manufacturing a semiconductor device in which plural kinds of thin film transistors of different structures are formed over one substrate to form plural kinds of circuits and in which the number of steps is not greatly increased is provided. After a metal thin film is formed over an insulating surface, an oxide semiconductor layer is formed thereover. Then, oxidation treatment such as heat treatment is performed to oxidize the metal thin film partly or entirely. Further, structures of thin film transistors are different between a circuit in which emphasis is placed on the speed of operation, such as a logic circuit, and a matrix circuit.
摘要:
An object is to improve reliability of a light-emitting device. A light-emitting device has a driver circuit portion including a transistor for a driver circuit and a pixel portion including a transistor for a pixel over one substrate. The transistor for the driver circuit and the transistor for the pixel are inverted staggered transistors each including an oxide semiconductor layer in contact with part of an oxide insulating layer. In the pixel portion, a color filter layer and a light-emitting element are provided over the oxide insulating layer. In the transistor for the driver circuit, a conductive layer overlapping with a gate electrode layer and the oxide semiconductor layer is provided over the oxide insulating layer. The gate electrode layer, a source electrode layer, and a drain electrode layer are formed using metal conductive films.
摘要:
A thin film transistor including an oxide semiconductor with favorable electrical characteristics is provided. The thin film transistor includes a gate electrode provided over a substrate, a gate insulating film provided over the gate electrode, an oxide semiconductor film provided over the gate electrode and on the gate insulating film, a metal oxide film provided on the oxide semiconductor film, and a metal film provided on the metal oxide film. The oxide semiconductor film is in contact with the metal oxide film, and includes a region whose concentration of metal is higher than that of any other region in the oxide semiconductor film (a high metal concentration region). In the high metal concentration region, the metal contained in the oxide semiconductor film may be present as a crystal grain or a microcrystal.
摘要:
An object is to provide a semiconductor device with stable electric characteristics in which an oxide semiconductor is used. The impurity concentration in the oxide semiconductor layer is reduced in the following manner: a silicon oxide layer including many defects typified by dangling bonds is formed in contact with the oxide semiconductor layer, and an impurity such as hydrogen or moisture (a hydrogen atom or a compound including a hydrogen atom such as H2O) included in the oxide semiconductor layer is diffused into the silicon oxide layer. Further, a mixed region is provided between the oxide semiconductor layer and the silicon oxide layer. The mixed region includes oxygen, silicon, and at least one kind of metal element that is included in the oxide semiconductor.
摘要:
An object is to provide an oxide semiconductor having stable electric characteristics and a semiconductor device including the oxide semiconductor. A manufacturing method of a semiconductor film by a sputtering method includes the steps of holding a substrate in a treatment chamber which is kept in a reduced-pressure state; heating the substrate at lower than 400° C.; introducing a sputtering gas from which hydrogen and moisture are removed in the state where remaining moisture in the treatment chamber is removed; and forming an oxide semiconductor film over the substrate with use of a metal oxide which is provided in the treatment chamber as a target. When the oxide semiconductor film is formed, remaining moisture in a reaction atmosphere is removed; thus, the concentration of hydrogen and the concentration of hydride in the oxide semiconductor film can be reduced. Thus, the oxide semiconductor film can be stabilized.
摘要:
An object is to provide a thin film transistor and a method for manufacturing the thin film transistor including an oxide semiconductor with a controlled threshold voltage, high operation speed, a relatively easy manufacturing process, and sufficient reliability. An impurity having influence on carrier concentration in the oxide semiconductor layer, such as a hydrogen atom or a compound containing a hydrogen atom such as H2O, may be eliminated. An oxide insulating layer containing a large number of defects such as dangling bonds may be formed in contact with the oxide semiconductor layer, such that the impurity diffuses into the oxide insulating layer and the impurity concentration in the oxide semiconductor layer is reduced. The oxide semiconductor layer or the oxide insulating layer in contact with the oxide semiconductor layer may be formed in a deposition chamber which is evacuated with use of a cryopump whereby the impurity concentration is reduced.
摘要:
It is an object to provide a manufacturing method of a structure of a thin film transistor including an oxide semiconductor film, in which threshold voltage at which a channel is formed is positive and as close to 0 V as possible. A protective insulating layer is formed to cover a thin film transistor including an oxide semiconductor layer that is dehydrated or dehydrogenated by first heat treatment, and second heat treatment at a temperature that is lower than that of the first heat treatment, in which the increase and decrease in temperature are repeated plural times, is performed, whereby a thin film transistor including an oxide semiconductor layer, in which threshold voltage at which a channel is formed is positive and as close to 0 V as possible without depending on the channel length, can be manufactured.
摘要:
The semiconductor device includes a driver circuit including a first thin film transistor and a pixel including a second thin film transistor over one substrate. The first thin film transistor includes a first gate electrode layer, a gate insulating layer, a first oxide semiconductor layer, a first oxide conductive layer, a second oxide conductive layer, an oxide insulating layer which is in contact with part of the first oxide semiconductor layer and which is in contact with peripheries and side surfaces of the first and second oxide conductive layers, a first source electrode layer, and a first drain electrode layer. The second thin film transistor includes a second gate electrode layer, a second oxide semiconductor layer, and a second source electrode layer and a second drain electrode layer each formed using a light-transmitting material.
摘要:
A semiconductor device having a structure which enables sufficient reduction in parasitic capacitance is provided. In addition, the operation speed of thin film transistors in a driver circuit is improved. In a bottom-gate thin film transistor in which an oxide insulating layer is in contact with a channel formation region in an oxide semiconductor layer, a source electrode layer and a drain electrode layer are formed in such a manner that they do not overlap with a gate electrode layer. Thus, the distance between the gate electrode layer and the source electrode layer and between the gate electrode layer and the drain electrode layer are increased; accordingly, parasitic capacitance can be reduced.