摘要:
A non-volatile memory device includes a semiconductor substrate and a pair of buried bitlines within the substrate. A scaled down dielectric stack is formed over the substrate. The scaled down dielectric stack includes a scaled down top dielectric layer, a scaled down charge trapping dielectric layer and a bottom dielectric layer. A wordline is formed over the dielectric stack. The memory device is operative to be programmed using a reduced wordline operating voltage of less than about +8 Volts, and to be erased using a reduced wordline operating voltage of less than about −6 Volts.
摘要:
Flash memory devices and methods for fabricating the same are provided. In accordance with an exemplary embodiment of the invention, a method for fabricating a memory device comprises the steps of fabricating a first gate stack and a second gate stack overlying a substrate. A trench is etched into the substrate between the first gate stack and the second gate stack and a first impurity doped region is formed within the substrate underlying the trench. The trench is filled at least partially with a conductive material.
摘要:
A method and apparatus are provided for adaptive memory cell overerase compensation. A semiconductor memory device (100) is provided for performing the adaptively compensating erase verify operation (500, 600). The memory device (100) includes at least one word line (402). One or more memory cells (200) and one or more reference cells (406, 408) are connected to the word lines (402), where the one or more reference cells (406, 408) include an erased reference cell (408) connected to each word line (402). The method (500, 600) for adaptive memory cell overerase compensation includes determining an erase verify gate voltage (506, 608) utilizing the erased reference cell(s) (408) and verifying an erase voltage (514) of the memory cells (200) in response to the erase verify gate voltage (512, 614).
摘要:
Methods are provided for fabricating a memory device comprising a dual bit memory cell. The method comprises, in accordance with one embodiment of the invention, forming a gate dielectric layer and a central gate electrode overlying the gate dielectric layer at a surface of a semiconductor substrate. First and second memory storage nodes are formed adjacent the sides of the gate dielectric layer, each of the first and second storage nodes comprising a first dielectric layer and a charge storage layer, the first dielectric layer formed independently of the step of forming the gate dielectric layer. A first control gate is formed overlying the first memory storage node and a second control gate is formed overlying the second memory storage node. A conductive layer is deposited and patterned to form a word line coupled to the central gate electrode, the first control gate, and the second control gate.
摘要:
A flash memory system configured in accordance with an example embodiment of the invention employs a virtual ground array architecture. During programming operations, target memory cells are biased with a positive source bias voltage to reduce or eliminate leakage current that might otherwise conduct through the target memory cells. A positive source bias voltage may also be applied to target memory cells during verification operations (program verify, soft program verify, erase verify) to reduce or eliminate leakage current that might otherwise introduce errors in the verification operations.
摘要:
A non-volatile memory device includes a semiconductor substrate and a source and drain within the substrate. A dielectric stack is formed over the substrate. The dielectric stack includes a thin top dielectric layer. A gate electrode is formed over the dielectric stack. The memory device is operative to perform a direct tunneling channel erase operation in which a pair of charge storing cells within a charge storing layer are erased via direct tunneling through the thin top dielectric layer.
摘要:
Disclosed is an apparatus and method for adjusting a memory parameter in a non-volatile memory circuit. On a trigger event, a parameter is determined in accordance with a circuit characteristic associated with the memory block. The parameter may be a new read level voltage to apply to a page of a memory block, or a program verify level voltage used to program a page of a memory block. On determining the parameter a command is sent to the memory circuit to apply the parameter to the page of the memory block. The method can be triggered by an event such as P/E cycle times and the condition is dynamically adjusted to extend the life of the memory circuit.
摘要:
Disclosed is an apparatus and method for determining a parameter for programming a non-volatile memory circuit. On receiving write or erase operation a parameter is determined as a function of a circuit characteristic associated with a memory block. An adjusted condition, for example, read or write time, or the standard deviation of voltage thresholds in a distribution of cells, is then determined as a function of the parameter, and a command provided to the memory circuit to use the parameter in the next write or erase operation performed on the memory block. The method can be triggered by an event such as P/E cycle times and the condition is dynamically adjusted to extend the life of the memory circuit.
摘要:
A dual-bit memory device is provided which includes trench isolation material disposed below a bit line that is shared by adjacent memory cells. The dual-bit memory device comprises a substrate, a first memory cell designed to store two bits of information, a second memory cell designed to store two bits of information, and an insulator region. The first memory cell is adjacent to the second memory cell. The first memory cell includes a first buried bit line and a second buried bit line. The first memory cell and the second memory cell share the second buried bit line. The insulator region is disposed in the substrate below the second buried bit line to prevent electrons from flowing between the first memory cell and the second memory cell.
摘要:
A flash memory system configured in accordance with an example embodiment of the invention employs a virtual ground array architecture. During programming operations, target memory cells are biased with a positive source bias voltage to reduce or eliminate leakage current that might otherwise conduct through the target memory cells. A positive source bias voltage may also be applied to target memory cells during verification operations (program verify, soft program verify, erase verify) to reduce or eliminate leakage current that might otherwise introduce errors in the verification operations.