Abstract:
A technique provides apparatuses, methods, and computer readable media for sending sleep information from an end device to a central unit of a network, in which the wake-up time of the end device is aligned to the scanning time for the central unit. The technique addresses at least two considerations: the clock accuracy of the end device is accounted for, and the reason that the end device requests sleep mode operation is provided. To address the above considerations, the end device may send its clock tolerance information and/or request for sleep mode (RSM) command to the central unit once the end device is connected via the network. The central unit may then adjust the scanning time based on the clock tolerance information. If the central unit receives a response from the end device during the adjusted scanning time, the central unit deems that the end device is still connected.
Abstract:
The present invention provides apparatuses and methods for controlling the brightness of a display unit based on detected movement of an external object such as a user. An apparatus includes a display, e.g., a color liquid crystal display (LCD) or organic light emitting diode (OLED). A proximity circuit generates a transmitted signal and a received signal. The received signal results from the transmitted signal being reflected by an external object. A control unit processes the received signal to determine a degree of motion of the external object. When the degree of motion is greater than a first predetermined threshold but not greater than a second predetermined threshold, the display is activated and operating at partial intensity. When the degree of motion is greater than the second predetermined threshold, the display is activated at full intensity. The degree of motion may be determined from the variation of the received signal.
Abstract:
The present invention provides apparatuses, methods, and computer readable media for supporting communications for a plurality of transmitter-receiver pairs on a common frequency spectrum. A transmitting device transmits a consecutively sequenced signal sequentially containing messages to a corresponding receiving device. A duty cycle adjustment circuit determines the duration between adjacent messages so that the consecutively sequenced signal is characterized by a randomized duty cycle. The duty cycle adjustment circuit selects the duration from a sequence that is characterized by an average duration. The duty cycle adjustment circuit obtains the duration from an array by determining an index from a function of a random variable. A receiving device receives a consecutively sequenced signal sequentially containing messages from a transmitting device, where the consecutively sequenced signal is characterized by a randomized duty cycle. A processing circuit detects the messages and initiates an error signal when a predetermined number of consecutive invalid messages are detected.
Abstract:
The present invention provides apparatuses and computer readable media for obtaining status information from a heating, ventilating, and air conditioning (HVAC) system and sending the status information to a remote networked device using a data container. A thermostat obtains status information from a HVAC system, associates the status information with a corresponding index number, and includes the index number and HVAC information in a data container. The data container can assume different forms, including a customer-defined cluster or a publicly accessible cluster. The HVAC information may be encoded so that the HVAC information can be included as an attribute of the publicly accessible cluster. HVAC information may include relay status of a relay in the HVAC system. The relay is identified by an index number that is included in an attribute. A networked device typically receives the HVAC information from the thermostat in at least one data container.
Abstract:
The present invention supports the remote control of an environmental unit based on an effective temperature that is indicative of a comfort index to an occupant of a controlled environmental space. The remote controller obtains a plurality of environmental factors, e.g., temperature, relative humidity, and air speed, in order to determine an effective temperature. When the effective temperature is sufficiently different from a set point temperature, the remote controller activates an environmental unit to change the effective temperature in accordance with the set point temperature. The environmental unit may include an air conditioner, furnace, or heat pump. Also, the remote controller may communicate with at least one remote sensor over a wireless communications channel in order to obtain the environmental factors for determining the effective temperature.
Abstract:
The present invention provides apparatuses and methods for controlling the brightness of a display unit based on detected movement of an external object such as a user. An apparatus includes a display, e.g., a color liquid crystal display (LCD) or organic light emitting diode (OLED). A proximity circuit generates a transmitted signal and a received signal. The received signal results from the transmitted signal being reflected by an external object. A control unit processes the received signal to determine a degree of motion of the external object. When the degree of motion is greater than a first predetermined threshold but not greater than a second predetermined threshold, the display is activated and operating at partial intensity. When the degree of motion is greater than the second predetermined threshold, the display is activated at full intensity. The degree of motion may be determined from the variation of the received signal.
Abstract:
The present invention provides methods and apparatuses for controlling an environmental system with an adjustable speed motor from environmental information received through a network A network controller receives differential environmental information through the network. A motor controller, which controls the speed of the variable speed motor, obtains the received differential environmental information from the network controller, determines a desired speed of a variable speed motor of the environmental system based on the received differential temperature, and adjusts the operating speed of the variable speed motor to approximate the desired speed. The network controller further receives discrete environmental information through the network, where the discrete environmental information includes at least one measured environmental factor and an environmental set point. An environmental processor, which may be integrated with the motor controller, determines processed differential environmental information from the discrete environmental information and provides the processed differential environmental information to the motor controller.
Abstract:
The present invention provides apparatuses, computer media, and methods for controlling the speed and direction of a controlled device. An input device provides input information, which is converted into speed information and direction information. A controlled device, e.g., a variable speed motor, is then instructed to operate at a device speed and direction in accordance with the speed information and direction information. The remote device may include a circular input device through which a user draws strokes. The remote device instructs the controlled device to operate at a device speed and a direction in accordance with extracted characteristics of the entered stroke such as the speed of drawing the stroke and the direction of the stroke. The remote device then transmits a signal with speed and direction information to control the controlled device.
Abstract:
The present invention provides methods and apparatuses for configuring an electrical device to a selected orientation. Direction information that is indicative of the orientation of the electrical device is provided by a directional detection switch. A processor selects a selected orientation from a plurality of permitted orientations by processing the direction information and instructs a display unit to operate in the selected orientation. Different adjacent contacts of a directional detection switch are activated corresponding to different orientation of the electrical device. A conductive ball may be positioned by gravity and consequently conducts an electrical current between two corresponding adjacent contacts based on the orientation of the electrical device. A display unit of an electrical device may include an output component or an input component that is configured based on the orientation of the electrical device.
Abstract:
The present invention provides methods, apparatuses, and computer-readable media for inputting character information from a circular input device. Character information is provided by a user drawing at least one input stroke on the circular input device. The circular input device is partitioned into a plurality of regions, where each region is associated with a numerical value. When an input stroke is detected, corresponding numerical values are obtained. A code is obtained from the sequence, and a character is extracted from the code. Also, character strokes may be obtained with at least one input stroke from a circular input device, where a character contains a plurality of character strokes. Different operational modes may be selected by a user pressing a predefined location of a circular input device so that a user may enter different languages, including English and Chinese.