Abstract:
A pump system features a power adapter and a pump having a signal processor. The power adapter includes voltage settings that respond to a voltage setting by a user and provide a selected voltage. The signal processor receives signaling containing information about the selected voltage supplied to a motor to run the pump, and also containing information about whether a current draw of the pump is lower than a predetermined low current level or is higher than a predetermined high current level; and determines whether to shut off the pump after a predetermined time, based on the signaling received.
Abstract:
A smart phone for using to optimize the energy production of a solar panel in real time by a user features a signal processor to receive GPS signaling containing information about the global position of the smart phone, and input signaling containing control information to initiate a GUI algorithm in the signal processor to determine visual and/or audio cues for a user on a proper alignment of a solar panel for optimal solar energy collection efficiency; and provide display imaging signaling from a screen of the smart phone, or audio signaling from a speaker in the smart phone containing information about the visual and/or audio cues for the user on the proper alignment of the solar panel for optimal solar efficiency, so as to enable the user to simultaneously adjust the planar orientation of the solar panel having the smart phone placed thereon, based on the visual and audio cues.
Abstract:
A pump is provided featuring a housing and battery configuration, where the housing is configured with a battery receiving portion having electrical terminals for receiving power to the pump, and where the battery has a protruding portion with corresponding electrical terminals configured to contact the electrical terminals to provide power to the pump when the protruding portion of the battery is inserted into the battery receiving portion of the housing and rotated in one direction to an “ON” position, and also configured not to contact the electrical terminals when the battery is not rotated to the “ON” position.
Abstract:
The present invention provides a device for turning off a pump. In operation, when the device is activated there is vacuum pressure in a syrup chamber. A diaphragm acting in response to the vacuum causes a piston assembly in the syrup chamber to move in the one direction (e.g. right), thus compressing a W-shaped spring in the air chamber. As the piston assembly moves, a spring holder of the W-shaped spring also moves to the one direction. As the W-shaped spring is compressed over and passed the most compressed position, the W-shaped spring moves a valve assembly in the air chamber to an opposite direction (e.g. left) and blocks a hole in a spool that otherwise allows air to pass through the air chamber to activate the pump. When the air is stopped, this turns off the pump.
Abstract:
A pump has a signal processor, including one forming part of a printed circuit board assembly, that receives signaling containing information about a voltage supplied to a motor to run a particular pump model, and also containing information about whether a current draw of the pump is lower than a predetermined low current level or is higher than a predetermined high current level; and determines whether to shut off the pump after a predetermined time, based on the signaling received. The signal processor provides control signalling to shut off the pump after the predetermined time if the current draw of the pump is lower than the predetermined low current level or is higher than the predetermined high current level, where the predetermined low current level and the predetermined high current level depend on the voltage being supplied to the motor to run the particular pump model.
Abstract:
Diaphragm pump features upper/lower diaphragm pumping assemblies (U/LDPAs) for pumping fluid and a manifold assembly arranged therebetween. The manifold assembly include a manifold body having an inlet with dual inlet ports and an inlet chamber to receive the fluid from a source; an inlet check valve assembly channel having an inlet duckbill check valve assembly (DCVA) arranged therein to receive the fluid from the dual inlet ports; U/LDPAs orifices having the U/LDPA arranged therein to receive the fluid from the inlet DCVA via first upper/lower manifold conduits and provide the fluid from the U/LDPAs via second upper/lower manifold conduits; an outlet check valve assembly channel having an outlet DCVA arranged therein to receive the fluid from the U/LDPAs; and an outlet having dual outlet ports and an outlet chamber to receive the fluid from the U/LDPAs and provide the fluid from the pump to a outlet source.
Abstract:
A filter manifold is provided for processing fluid being provided to a fluid dispenser, featuring a new and unique combination of a mounting bracket, a filter cartridge and an accumulator cartridge. The mounting bracket is configured with porting connections. The filter cartridge may include a filter cartridge porting connection configured to plumb into one of the porting connections on the mounting bracket and also configured to filter the fluid being provided to the fluid dispenser. The accumulator cartridge includes an accumulator cartridge porting connection configured to plumb into another one of the porting connections on the mounting bracket and also configured to receive, accumulate and provide the fluid to the filter cartridge to be filtered before being provided to the fluid dispenser.
Abstract:
A pump features an impeller having a rotating disk with a front side and a back side. The impeller is arranged to rotate on a shaft with the front side nearest an inlet and the back side nearest a motor housing, so as to provide a main flow of liquid being pumped and a rear impeller flow of the liquid being pumped in an area between the back side of the impeller and the motor housing. The back side has a spiral-shaped vane configured to constantly sweep, and expel any debris from the area between the back side of the impeller and the motor housing. The spiral-shaped vane is formed as a curve that emanates from a central point defined by an axis of the impeller and gets progressively farther away as the curve revolves at least one complete revolution around the central point or axis.
Abstract:
Apparatus for providing liquid from a reservoir of liquid contained in a vehicle/vessel or other equipment, featuring a pump for pumping liquid having a pump housing outlet nozzle; and a back flow preventer assembly having an inlet end to couple to the outlet nozzle, having an outlet end to couple to an outlet hose for connecting to an outlet exiting a wall of a vehicle, vessel or other equipment, and having a duckbill-type check valve to provide liquid being pumped in one direction from the reservoir of the vehicle, vessel or other equipment to the outlet exiting the wall of the vehicle, vessel or other equipment via the outlet hose, and also configured to prevent residue liquid left in the outlet hose from flowing back into the pump and returning to the reservoir once the pump has completed pumping if the outlet exiting the wall of the vehicle, vessel or other equipment is above the outlet nozzle, so as to prevent on an on/off oscillation of the pump depending on the volume of residue liquid left in the outlet hose.
Abstract:
Apparatus, including a pumping system, is provided featuring a pump and a control circuit. The pump has an impeller housing configured with a slit at the top for trapped air to leave the impeller housing once the pump has been submerged. The control circuit is configured to cycle the pump on and off for a predetermined number of cycles so that the trapped air will float to the top and be expelled out the slit when the pump is cycled off. The control circuit is configured to leave the pump on after the predetermined number of cycles.