Abstract:
The present invention discloses an MEMS sensor and a method for making the MEMS sensor. The MEMS sensor according to the present invention includes: a substrate including an opening; a suspended structure located above the opening; and an upper structure, a portion of which is at least partially separated from a portion of the suspended structure; wherein the suspended structure and the upper structure are separated from each other by a step including metal etch.
Abstract:
A motion estimation method for a succession of frames in a digital coding system includes: a) with reference to a first block in a first frame, searching a second frame for a second block that corresponds to the first block; and b) estimating a motion vector of the first block on the basis of the second block in the second frame; wherein step a) includes: a1) forming a first initial search range including a virtual rhombus-shaped pattern substantially centered at a pre-determined block, and a2) expanding progressively outward a second initial search range based on the virtual rhombus-shaped pattern.
Abstract:
The present invention discloses a MEMS device with particles blocking function, and a method for making the MEMS device. The MEMS device comprises: a substrate on which is formed a MEMS device region; and a particles blocking layer deposited on the substrate.
Abstract:
The present invention discloses a micro-electro-mechanical system (MEMS) device, comprising: a substrate with at least one opening; and a membrane supported on the substrate, the membrane including at least two thin segments and a thick segment connected together, wherein the two thin segments are not at the same level, and the thick segment is formed by a plurality of layers including at least two metal layers and a via layer, such that the membrane has a curve cross section.
Abstract:
The present invention discloses a micro-electro-mechanical system (MEMS) device, comprising: a mass including a main body and two capacitor plates located at the two sides of the main body and connected with the main body, the two capacitor plates being at different elevation levels; an upper electrode located above one of the two capacitor plates, forming one capacitor therewith; and a lower electrode located below the other of the two capacitor plates, forming another capacitor therewith, wherein the upper and lower electrodes are misaligned with each other in a horizontal direction.
Abstract:
According to the present invention, an in-plane sensor comprises a structure unit which includes: a fixed structure including a fixed finger and a fixed column connected to each other, the fixed finger having a supported end supported by the fixed column and a suspended end; and a movable structure including at least one proof mass which surrounds the fixed finger in a horizontal plane.
Abstract:
The present invention relates to an object-based 3-dimensional stereo information generation apparatus and method, and an interactive system using the same. The method comprises: obtaining at least two 2-dimensional images with respect to the same space at a first time point; extracting objects from the at least two 2-dimensional images, respectively; establishing correspondences between objects; and generating 3-dimensional stereo information according to corresponding objects. The apparatus and interactive system comprises: at least two image capturing units for respectively capturing 2-dimensional images; and processing means for generating 3-dimensional stereo information according to the captured 2-dimensional images.
Abstract:
A displacement estimation method is disclosed which comprises: a signal capturing step for capturing a signal; a displacement estimation step for calculating a displacement based on a state change of the signal; and an output step for outputting the displacement, in which the displacement estimation step includes one or more of the steps of: (A) consistency check to determine whether the state change of the signal is consistent with the waveform of the signal; (B) period prediction and compensation to count in the present period according to a proportional length of a previous period; and (C) adaptive threshold update to adjust the definition of the state change corresponding to the amplitude of the signal. A displacement estimation device employing this method, and a method for estimation of signal frequency based on bumping algorithm are also disclosed.
Abstract:
A proximity sensor includes: a transmitter unit for transmitting a light signal; a receiver unit for receiving the light signal reflected by an object to determine a proximity status of the object; and a housing defining a first enclosed accommodation space for accommodating the receiver unit, wherein the portion of the housing which defines the first enclosed accommodation space has a sealed light passage made of a light-transmissible material such that the receiver unit is capable of receiving the light signal reflected by the object through the light passage. The housing can further include a second enclosed accommodation space for accommodating the transmitter unit.
Abstract:
An SAR ADC includes: at least one sub-ADC, configured to convert a corresponding input signal to a corresponding SAR code; and a tuning control unit, configured to adjust a full-scale voltage (VFS) of each of the sub-ADC to a corresponding predetermined target level in a VFS tuning mode. The tuning control unit generates a tuning code to control an adjusting capacitor array coupled to the sub-ADC for tuning the VFS. The tuning control unit controls the sub-ADC to convert plural reference voltages in the VFS tuning mode and extrapolating the conversion result to determine a corresponding calibrating VFS. The tuning control unit determines whether the calibrating VFS meeting the target VFS and loops the adjusting process in a linear search method or in a SAR method.