Abstract:
An attachment point apparatus and system for photovoltaic arrays is disclosed as well as an installed photovoltaic array using attachment apparatus. One embodiment provides a rail for receiving a PV module, including a rail member located substantially beneath at least a portion of a second photovoltaic module and having a first end located near a gap between a first and second photovoltaic modules. An embodiment also provides a second photovoltaic module which is substantially coplanar with and located between a first and third photovoltaic modules and wherein said rail member is connected to the first, second, and third photovoltaic modules and attached to a support structure by a first and second attachment brackets. A further embodiment provides a lever clip, said lever clip comprising a head portion connecting a photovoltaic module to a rail, a lever portion extending away from a head portion, and a retaining portion near an end of a lever portion wherein the lever portion acts as a lever to rotate the head portion during installation such that the head portion secures the photovoltaic module to a frame.
Abstract:
A system and apparatus are disclosed including PV modules having a frame allowing quick and easy assembling of the PV modules into a PV array in a sturdy and durable manner. In examples of the present technology, the PV modules may have a grooved frame where the groove is provided at an angle with respect to a planar surface of the modules. Various couplings may engage within the groove to assemble the PV modules into the PV array with a pivot-fit connection. Further examples of the present technology operate with PV modules having frames without grooves, or with PV modules where the frame is omitted altogether.
Abstract:
One embodiment of the present invention provides a solar module. The solar module includes a front-side cover, a back-side cover, and a plurality of solar cells situated between the front- and back-side covers. A respective solar cell includes a multi-layer semiconductor structure, a front-side electrode situated above the multi-layer semiconductor structure, and a back-side electrode situated below the multi-layer semiconductor structure. Each of the front-side and the back-side electrodes comprises a metal grid. A respective metal grid comprises a plurality of finger lines and a single busbar coupled to the finger lines. The single busbar is configured to collect current from the finger lines.
Abstract:
A photovoltaic (PV) module framing and coupling system enables the attachment of PV modules to a roof or other mounting surface without requiring the use of separate structural support members which attach directly to and span between multiple PV modules in a formed PV array. The apparatus provides a parallel coupling for securely interlocking the outside surfaces of parallel frame members together in a side to side arrangement to form an array with improved structural load distribution. The coupling may attach to a slot in the frame at substantially any position along the length of the frame thereby enabling the interconnection of adjacent PV modules along both an x and y axis. The apparatus may further provide a rotating portion and locking portion, mounting brackets for direct connection to a mounting surface, grounding teeth, and a twist-lock engagement means for interlocking and aligning PV modules in the array.
Abstract:
A solar array with successive rows of photovoltaic modules angled in opposing directions forming peaks and valleys between the rows with the valleys (i.e.: lower sides of the photovoltaic module rows) being mounted close together and the peaks (i.e.: upper sides of the photovoltaic module rows) being mounted far apart to improve system aerodynamics and permit ease of access for installers. Included is a system for connecting the upper sides of the photovoltaic modules to connectors that slide on bars extending between upper and lower mounting bases and for pivot locking the lower sides of the photovoltaic modules to the lower mounting bases.
Abstract:
Embodiments of the present invention include systems and methods for performing design automation on a mobile computer system. In one example embodiment the present invention includes a computer-implemented method comprising storing design automation data on a mobile device, displaying a plurality of design automation process steps to a user, the plurality of design automation process steps guiding the user through a design automation process for a project, receiving design automation input data from the user in the mobile device for a plurality of the design automation process steps, executing one or more data processing algorithms specific to at least one of the design automation process steps, and generating output data for the design project.
Abstract:
One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gases to a corresponding gas channel.
Abstract:
One embodiment of the present invention provides a solar module. The solar module includes a front-side cover, a back-side cover, and a plurality of solar cells situated between the front- and back-side covers. A respective solar cell includes a multi-layer semiconductor structure, a front-side electrode situated above the multi-layer semiconductor structure, and a back-side electrode situated below the multi-layer semiconductor structure. Each of the front-side and the back-side electrodes comprises a metal grid. A respective metal grid comprises a plurality of finger lines and a single busbar coupled to the finger lines. The single busbar is configured to collect current from the finger lines.
Abstract:
A solid state circuit for performing rapid shutdown of a photovoltaic power generation system includes a pair of high voltage power transistors connected between a photovoltaic array and a pair of high voltage lines that function to supply power generated by the photovoltaic array to a DC to AC inverter. The solid state circuit further includes a control circuit configured so that when the photovoltaic power generation system operates under normal conditions, the control circuit maintains the pair of high voltage power transistors in the on state so that power produced by the photovoltaic array can be transmitted to the DC to AC inverter through the pair of high voltage lines. The control circuit is further configured so that upon receiving a rapid shutdown command, the control circuit turns off the pair of high voltage power transistors to thereby electrically disconnect the photovoltaic array from the pair of power lines.
Abstract:
One embodiment of the present invention provides an electrode grid positioned at least on a first surface of a photovoltaic structure. The electrode grid can include a number of finger lines and an edge busbar positioned at an edge of the photovoltaic structure. The edge busbar can include one or more paste-alignment structures configured to facilitate confinement of conductive paste used for bonding the edge busbar to an opposite edge busbar of an adjacent photovoltaic structure.