Abstract:
One embodiment of the present invention provides a solar cell. The solar cell includes a base layer comprising crystalline Si (c-Si), a hole collector situated on a first side of the base layer, and an electron collector situated on a second side of the base layer, which is opposite the first side. The hole collector includes a quantum-tunneling-barrier (QTB) layer situated adjacent to the base layer and a transparent conducting oxide (TCO) layer situated adjacent to the QTB layer. The TCO layer has a work function of at least 5.0 eV.
Abstract:
One embodiment of the present invention provides a solar cell. The solar cell includes a substrate, a first heavily doped crystalline-Si (c-Si) layer situated above the substrate, a lightly doped c-Si layer situated above the first heavily doped crystalline-Si layer, a second heavily doped c-Si layer situated above the lightly doped c-Si layer, a front side electrode grid situated above the second heavily doped c-Si layer, and a backside electrode grid situated on the backside of the substrate.
Abstract:
One embodiment of the present invention provides a photovoltaic (PV) module. The PV module includes a front-side glass cover facing sunlight, a plurality of interconnected PV cells situated below the glass cover, a plurality of bussing wires electrically coupled to the PV cells, and a back-sheet situated below the PV cells. The back-sheet comprises a metal layer sandwiched between a top and a bottom insulation layers. The back-sheet comprises a cut slot to facilitate the bussing wires to thread through the cut slot to reach a junction box situated below the back-sheet. The PV module further comprises one or more insulation layers inserted between the bussing wires and sidewalls of the cut slot in the back-sheet. The insulation layers are configured to insulate the bussing wires to the metal layer in the back-sheet.
Abstract:
One embodiment of the present invention provides a solar cell. The solar cell includes a base layer comprising crystalline Si (c-Si), an electron collector situated on a first side of the base layer, and a hole collector situated on a second side of the base layer, which is opposite the first side. The electron collector includes a quantum-tunneling-barrier (QTB) layer situated adjacent to the base layer and a transparent conducting oxide (TCO) layer situated adjacent to the QTB layer. The TCO layer has a work function of less than 4.2 eV.
Abstract:
One embodiment of the present invention provides a solar cell. The solar cell includes a photovoltaic structure and a front-side metal grid situated above the photovoltaic structure. The front-side metal grid also includes one or more electroplated metal layers. The front-side metal grid includes one or more finger lines, and each end of a respective finger line is coupled to a corresponding end of an adjacent finger line via an additional metal line, thus ensuring that the respective finger line has no open end.
Abstract:
One embodiment of the present invention provides a heterojunction solar cell. The solar cell includes a metallurgical-grade Si (MG-Si) substrate, a layer of heavily doped crystalline-Si situated above the MG-Si substrate, a layer of lightly doped crystalline-Si situated above the heavily doped crystalline-Si layer, a backside ohmic-contact layer situated on the backside of the MG-Si substrate, a passivation layer situated above the heavily doped crystalline-Si layer, a layer of heavily doped amorphous Si (a-Si) situated above the passivation layer, a layer of transparent-conducting-oxide (TCO) situated above the heavily doped a-Si layer, and a front ohmic-contact electrode situated above the TCO layer.
Abstract:
One embodiment of the present invention provides a heterojunction solar cell. The solar cell includes a metallurgical-grade Si (MG-Si) substrate, a layer of heavily doped crystalline-Si situated above the MG-Si substrate, a layer of lightly doped crystalline-Si situated above the heavily doped crystalline-Si layer, a backside ohmic-contact layer situated on the backside of the MG-Si substrate, a passivation layer situated above the heavily doped crystalline-Si layer, a layer of heavily doped amorphous Si (a-Si) situated above the passivation layer, a layer of transparent-conducting-oxide (TCO) situated above the heavily doped a-Si layer, and a front ohmic-contact electrode situated above the TCO layer.
Abstract:
One embodiment of the present invention provides a solar module. The solar module includes a front-side cover, a back-side cover, and a plurality of solar cells situated between the front- and back-side covers. A respective solar cell includes a multi-layer semiconductor structure, a front-side electrode situated above the multi-layer semiconductor structure, and a back-side electrode situated below the multi-layer semiconductor structure. Each of the front-side and the back-side electrodes comprises a metal grid. A respective metal grid comprises a plurality of finger lines and a single busbar coupled to the finger lines. The single busbar is configured to collect current from the finger lines.
Abstract:
One embodiment of the present invention provides a solar module. The solar module includes a front-side cover, a back-side cover, and a plurality of solar cells situated between the front- and back-side covers. A respective solar cell includes a multi-layer semiconductor structure, a front-side electrode situated above the multi-layer semiconductor structure, and a back-side electrode situated below the multi-layer semiconductor structure. Each of the front-side and the back-side electrodes comprises a metal grid. A respective metal grid comprises a plurality of finger lines and a single busbar coupled to the finger lines. The single busbar is configured to collect current from the finger lines.
Abstract:
One embodiment of the present invention provides a solar cell. The solar cell includes a photovoltaic structure and a front-side metal grid situated above the photovoltaic structure. The front-side metal grid also includes one or more electroplated metal layers. The front-side metal grid includes one or more finger lines, and each end of a respective finger line is coupled to a corresponding end of an adjacent finger line via an additional metal line, thus ensuring that the respective finger line has no open end.