Abstract:
A bulk adhesive transfer system for transferring adhesive particulate to a melter includes a bulk supply and a transfer device, which may define a hopper of the melter, a mobile bin, and/or a buffer unit. The transfer device is configured to receive unmelted adhesive particulate from the bulk supply and then be selectively docked with the melter to transfer the adhesive particulate to the melter. The bulk adhesive transfer system may also include a knife gate valve device, which includes a plurality of ports that sequentially open and close to control flow of the adhesive particulate towards the melter. The bulk adhesive transfer system simplifies refilling operations for a melter while enabling continuous operation of the melter, even when the transfer device is undocked for removal from the melter.
Abstract:
A system including a thermal control hose system, including a flexible hose, a thermal control element within a fluid path of the flexible hose, and a sensor configured to detect a temperature of a fluid traveling through the flexible hose.
Abstract:
A melting system includes a hopper for receiving solid hot melt material, a heated conduit in communication with the hopper for melting the solid hot melt material, and a valve for allowing solid hot melt material to flow from the hopper to the heated conduit. The valve includes a disk movable between a closed position and an open position, a stem connected to the disk and an actuator for controlling the position of the disk. The disk prevents solid hot melt material from flowing from the hopper to the conduit in the closed position and allows solid hot melt material to flow from the hopper to the conduit in the open position.
Abstract:
A method for dispensing epoxy comprising the step of degassing an epoxy. The method further comprises the step of associating the epoxy with an epoxy injector comprising a dispensing end. The method further comprises the step of a computer receiving data representative of a selected container to receive the epoxy. The method further comprises the step of a computer determining a dispensing rate and a dispensing amount, based on the received data. The method further comprises the step of a computer causing the epoxy injector to dispense the determined dispensing amount of epoxy, via the dispensing end, at the determined dispensing rate. The method further comprises the step of a computer causing a dispensing arm, supporting the dispensing end, to retract the dispensing end while the epoxy injector is dispensing the epoxy. The method further comprises the step of curing the dispensed epoxy.
Abstract:
A hot melt adhesive system includes an adhesive supply and an adhesive supply heater associated with the adhesive supply for melting hot melt adhesive material into a liquid hot melt adhesive. An adhesive dispenser is fluidly coupled with the adhesive supply and includes an outlet for dispensing the liquid hot melt adhesive. A fluid passage extends from the adhesive supply to the outlet of the adhesive dispenser; and an adhesive degradation detection device is operatively coupled to the fluid passage. The adhesive degradation detection device includes an energy source for emitting energy into the liquid hot melt adhesive in the fluid passage. The adhesive degradation detection device further includes a detector configured for detecting attenuated energy that emerges from the liquid hot melt adhesive. A controller operatively coupled to the adhesive degradation detection device can determine a degradation condition of the liquid hot melt adhesive.
Abstract:
An adhesive melter includes a melter tank with an interior communicating with a top opening, a sealing flange surrounding the top opening, and a lid assembly. The lid assembly includes guide rails and a lid for sliding on the guide rails between an open position exposing the top opening a closed position over the top opening. The lid includes a closure surface that slides generally along a plane of the sealing flange when the lid slides on the guide rails, and the closure surface also moves in a direction transverse to the plane defined by the sealing flange simultaneous to this sliding movement. The sliding movement of the lid enables an operator to grasp the handle and control the lid movement over the full range of lid movement, while the transverse movement of the closure surface avoids stiction forces from preventing sliding movement.
Abstract:
An adhesive dispensing system and method are configured to melt adhesive on demand and maintain the adhesive in a liquid state between dispensing cycles. The dispensing system includes a dispensing applicator with a manifold passage, a receiving device including a receiving chamber for holding a small amount of solid adhesive at the dispensing applicator and a first heating device for melting the adhesive on demand, and a second heating device at the manifold to maintain the temperature of the melted adhesive before dispensing. The receiving device is positioned adjacent to or partially nested within a manifold of the dispensing applicator such that the melted adhesive is delivered directly into the dispensing applicator. The second heating device applies heat energy to maintain the adhesive in the manifold passage as a liquid.
Abstract:
A hot melt system is described which includes a container of hot melt pellets, a melter, a feed system, a pump, and a dispensing system. A pressure relief system is built around the pump, which may redirect liquefied adhesive from the pump outlet to the pump inlet.
Abstract:
A fluid dispensing system includes a first fluid supply device for supplying a first fluid, a second fluid supply device for supplying a second fluid, a first heater for heating the first fluid to a first predetermined temperature and a second heater for heating the second fluid to a second predetermined temperature. The dispensing system further includes a nozzle for dispensing the first fluid and the second fluid, the nozzle dispensing the first fluid and the second fluid in intimate contact with one another, the first and second fluids being dispensed at a dispensing temperature, and a nozzle heater, the nozzle heater maintaining the nozzle at a third predetermined temperature independent of the first and/or second predetermined temperatures.
Abstract:
Provided is a substrate processing apparatus. The apparatus includes a processing chamber containing a substrate and processing the substrate by using a processing solution and a supplying unit supplying the processing solution to the processing chamber. The supplying unit includes a supply line through which the processing solution is supplied, a preliminary heater installed on the supply line and preliminary heating the processing solution, a main heater installed on the supply line at a lower stream of the preliminary heater and secondarily heating the processing solution, a first detour line connected to the supply line to detour to the preliminary heater and comprising a first valve, a second detour line connected to the supply line to detour the preliminary heater and the main heater or the main heater and comprising a second valve, and a controller controlling the first valve and the second valve.