Abstract:
A wheel, having first and second bead seats which are inclined towards the outside and a cylindrical wall intended for supporting a support ring, constituted by the assembly of: a disc comprising a hub bearing surface, a transition zone and a radially outer edge, the geometry of which constitutes the first seat and a first part of the cylindrical wall, and a rim comprising a plurality of cavities and being such that its radially outer wall corresponds to the second seat and to the complementary part of the cylindrical wall; the assembly being effected at the end of the rim on the side of the disc at the level of the cylindrical wall, on one hand, and at the level of the end of the radially inner wall of the rim, on the other hand.
Abstract:
Wheel rim comprising two rim seats having different diameters, inclined outwards and extended axially outwards by two humps of small height, the rim seat of smaller diameter being connected axially on the inside to a bearing surface via a truncated conical portion and the rim seat of larger diameter being connected axially on the inside to the said bearing surface by a rib of small or zero height, whose axially interior wall has a generatrix that makes with the rotation axis an angle open radially and axially outwards and at the most equal to 30null, characterised in that the said rib, which has an axially inside wall of axial width at most equal to the axial width of the said second seat is provided circumferentially with at least two transverse grooves of small size.
Abstract:
Mounting rim designed to form a rolling assembly with a tire and an inflatable and inflated tread bearing support, and comprising on each side of the equatorial plane a rim seat inclined outwards and extended axially outwards by a projection or hump, characterized in that it comprises, axially towards the inside between each rim seat for the tire beads and the equatorial plane XXnull, at least one truncated conical seat inclined inwards and designed to receive a bead of a tire tread bearing support. The rolling assembly is used either with a bearing support in the form of a toric membrane inflated hard which retains its shape and pressure if the tire is punctured, or with a bearing support in the form of a membrane that can expand in the event of a tire puncture and entirely fill the internal cavity of the tire.
Abstract:
A tire (1), a mounting rim (2) therefor and a circumferentially unstretchable ring (3) for supporting the tread (10) of the tire when running at low or zero pressure. The tire (1) has a radial ply casing (13) on which the points that are furthest apart axially are radially apart close to seats (12B) of outwardly sloping beads (12). The seats (12B) engage sloping seats (23′, 23″) on the rim (2), which may have at least one mounting well (22), at least one cylindrical portion (21) for receiving the supporting ring (3) and rim flange (24).
Abstract:
A tire with a radial carcass reinforcement, when viewed in meridian section, includes a first bead, the seat of which is inclined towards the outside, the heel of the bead being axially on the inside and being reinforced by at least a reinforcement ring, the toe of the bead being axially on the outside and having a rubber wedge section made of rubber mix, the wedge being defined by two sides, the said rubber mix having a Shore A hardness greater than the Shore A hardness(es) of the rubber mixes located axially and radially above the bead ring and above the rubber wedge section. The carcass reinforcement is wound around the bead ring, passing from the inside to the outside to form an upturn extending along the radially inner side of the rubber wedge section, then along the side opposite the apex A, and then covering axially and radially, at least in part, the outside of the rubber section above the wedge section, the said upturn having an end located radially above the reinforcement annular ring of the bead and axially between the straight line P1 extending the radially outer side of the wedge section and the straight line P2 perpendicular to the axis of rotation and tangent at N to the said annular ring.
Abstract:
A tire has a carcass reinforcement (1) which, when viewed in meridian secn, is wound in each bead B about a bead wire (2) coated with a rubber mix, passing from the heel to the toe of the bead B, the upturn (10) being located in a profile (3) of rubber mix in the form of a wedge defined by two sides (31 and 32) coming from an apex A located beneath the section of the coated bead wire (2). Advantageously the upturn (10) surrounds in its entirety the contour of the profile (3), forming either a first radially inner side (32), a lateral side (30), and a final radially outer side (31) or a first radially outer side (31), a lateral side (30), and a final radially inner side (32). The tire may form with different rims J high-performance assemblies in the event of travel at low or zero pressure, permitting simple mounting of the tires and optionally of bearing supports S for the tire tread on the rims J.
Abstract:
A pneumatic tire having sidewalls of unequal length and a carcass constructed to conform when uninflated to equilibrium cross-sectional shape, the shorter sidewall terminating radially inwardly by that point at which the equilibrium shape of the sidewall becomes perpendicular relative to the axis of rotation of the tire.
Abstract:
A tire intended to be mounted on a drop-center rim with a flange height G and a radius of curvature R1 has first and second beads each having an annular reinforcing structure having a radially innermost point, the radial distance between the radially innermost point and the mounting rim being A, and a carcass reinforcement anchored in the two beads by being turned back around the annular reinforcing structure forming, within each bead, a main strand and a turned-back strand, in which the thicknesses EB1 of the first bead and EB2 of the second bead are the distance separating (i) the point on the main strand that is at a distance R from the radially innermost point, where R=G+(R1)/2−A, and (ii) the point on the exterior surface of the bead that is at the distance R from the radially innermost point, and in which |EB1−EB2|≧1 mm.